• Title/Summary/Keyword: Hydrologic conditions

Search Result 127, Processing Time 0.025 seconds

Analysis on Design Parameters of Small Hydropower Sites with Rainfall Conditions (강우상태에 따른 소수력발전입지의 설계변수 특성 분석)

  • Lee, Chul-Hyung;Park, Wan-Soon
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.4
    • /
    • pp.59-64
    • /
    • 2012
  • The correlation between hydrologic performance design parameters of small hydro power(SHP) sites and rainfall condition have been analyzed for major river systems. The model, which can predict flow duration characteristic of stream, was developed to estimate the inflow caused from rainfall. And another model to predict hydrologic performance for SHP plants is established. Based on the models developed in this study, the hydrologic performance characteristics for SHP sites have been analyzed. The results show that the hydrologic performance characteristics of SHP sites have some difference between the river systems. Especially, the specific design flowrate and specific output of SHP sites located on North Han river and Nakdong river systems have large difference compared with other river systems. It was found that the hydrologic performance design parameters such as specific design flowrate and specific output were affected by rainfall condition in basin area of SHP sites.

Hydrologic Performance Change of Small Scale Hydro Power Plant with Rainfall Condition Change (강우형태변화에 의한 소수력발전소 수문학적 성능의 변화)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.56-61
    • /
    • 2009
  • The effects of design parameters for small scale hydro power(SSHP) plants due to climate change have been studied. The model to predict hydrologic performance for SSHP plants is used in this study. The results from analysis far rainfall conditions based on KIER model show that the capacity and load factor of SSHP site had large difference between the period. Especially, the hydrologic performance of SSHP site due to rainfall condition of recent period varied in design flowrate sensitively. However climate change gave small effect in load factor of existing SSHP plant. And also, the methodology represented in this study can be used to decide the primary design specifications of SSHP sites.

Derivation of Data Demand through Analysis of Agreed Terms and Conditions on Environmental Impact Assessment - Focusing on the Water Environment - (환경영향평가 협의 내용 분석을 통한 데이터 수요 도출방안 - 수환경 분야를 중심으로 -)

  • Jinhoo Hwang;Yoonji Kim;Seong Woo Jeon;Yuyoung Choi;Hyun Chan Sung
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.1
    • /
    • pp.29-40
    • /
    • 2023
  • The need for improvement is raised due to limitations with environmental impact assessment, and the importance for data-based environmental impact assessment is increasing. In this study, data demand was derived by analyzing Agreed Terms and Conditions in the Water Environment field (Water Quality, Hydraulic & Hydrologic Conditions, and Marine Environment) of environmental impact assessment. Agreed Terms and Conditions on environmental impact assessment in the water environment field were classified and categorized by environmental impact assessment stage (addition to status survey, impact prediction and evaluation, establishment of reduction measures, post-environmental impact survey), and data demand for each type of consultation opinion was linked. As a result of the categorization of Agreed Terms and Conditions, it was classified into 18 types in the water quality, 15 types in the hydraulic & hydrologic conditions, and 17 types in the marine environment. As a result of linking data demand, the total number of data demand was 236 in the water quality, 98 in the hydraulic & hydrologic conditions, and 73 in the marine environment. The highest number of Agreed Terms and Conditions and data demands were found in the water quality for the evaluation item and establishment of reduction measures, specifically establishment of non-point source pollution reduction measures, for the stage. The numbers were judged to be linked to the relative importance of the items and the primary purpose of environmental impact assessment. The derivation of data demand through the analysis of Agreed Terms and Conditions in the environmental impact assessment can contribute to the advancement of the preparation of environmental impact assessment reports and is expected to increase data utilization by various decision-makers by establishing a systematic database.

Hydrologic Regimes Analyses on Down Stream Effects of the Young Chun Dam by Indicators of Hydrologic Alterations (수문변화 지표법에 의한 영천댐이 하류하천에 미치는 유황변화 분석)

  • Park, Bong-Jin;Kim, Joon-Tae;Jang, Chang-Lae;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.2
    • /
    • pp.163-172
    • /
    • 2008
  • Hydrologic regimes play a major role in determining the biotic composition, structure, and function of river ecosystem. In this study, hydrologic regimes were analyzed on down stream effects of the Young-Chun dam construction using the Indicators of Hydrologic Alterations(IHA). The analysis results were as follows ; (1) Monthly mean flows were decreased during drought and flood season on the pre and post dam, (2) Magnitude and Duration of Annual Exterm Conditions, annual minima 1-day means was $3.48m^3/sec$, $0.89m^3/sec$ and annual maxima 1-day mean was $833.1m^3/sec$, $672.1m^3/sec$ on the pre and post dam (3) Timing of Annual Exterm conditions, Julian date of the annual minima 1-day means was 180th(June) in the pre dam, 257th(September) in the post dam, Julian date of the annual maxima 1-day means was 209th(July) in the pre dam, 217th(August) in the post dam, (4) Frequency and Duration of High and Low Pulse, Low Puls counts and duration were 3 times and 23 days in the pre dam, High Pulse counts and duration were 4 times and 2 days in the pre dam. (5) Rate and Frequency of Water Condition Changes, rise rates was 39.27 %, 19.36 % and fall rates -15.85 %, -8.16 % in the pre and post dam, respectively (6) Coefficient of Variation, annual exteram water conditions were decreased from 0.9054 to 0.6314 and from 1.0440 to 0.9617, Timing of Annual Exterm conditions were incereased for minima flow from 0.269 to 0.282, for maxima form 0.069 to 0.153.

Water Quality Management Measures for TMDL Unit Watershed Using Load Duration Curve (수질오염총량 단위유역별 LDC(Load Duration Curve, 부하지속곡선) 적용을 통한 수질관리 대안 모색 - 금호강 유역 대상)

  • Yun, Soyoung;Ryu, Jaena;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.4
    • /
    • pp.429-438
    • /
    • 2013
  • This study was to develop effective water quality management measures using LDC (Load Duration Curve) curves for TMDL (Total Maximum Daily Loads) unit watershed. Using LDC curves, major factors for BOD and T-P concentration loads generation (i.e. point source or non-point source) in the case study area (Geumho river basin) were found for different hydrologic conditions. Different measures to deal with the pollutant loads were suggested to establish BMPs (Best Management Practices). It was found that the target area has urgent T-P management methods especially at moist and midrange hydrologic conditions because of point source pollutants occurred in developed areas. One example measure for this could be establishment of advanced treatment facility. This study proved that the use of LDC was a useful way to achieve TWQ (Target Water Quality) on the target watershed considered. It was also expected that the methodology applied in this study could have a wider application on the establishment of watershed water management measures.

Introduction to a New Sample Preparation Apparatus (H/Device) for Measurement of Hydrogen Isotope Composition of Natural Water (신(新) H/Device를 이용한 자연수의 수소동위원소비 측정)

  • Park, Seong-Sook;Yun, Seong-Taek;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.31 no.3
    • /
    • pp.265-271
    • /
    • 1998
  • In the hydrologic and hydrochemical studies of natural waters, oxygen and hydrogen isotope compositions of waters are very important to elucidate the origin and circulation pattern of water in the hydrologic system. The hydrogen isotope analysis of waters usually has been undertaken through the reduction of water to form hydrogen gas using pure metals (in general, zinc and uranium). In 1996, a new apparatus (H/Device) was developed to prepare the water samples (by the reduction with Cr metal) without some intrinsic problems that may yield incorrect and/or inaccurate data, and was installed at 1997 in the Center for Mineral Resources Research (CMR) in Korea University. However, the optimistic conditions of preparation and analysis of samples has not been established. In this paper, we introduce the efficiency of H/Device to obtain accurate hydrogen isotope values of water, and discuss both the optimum conditions including the effective reduction time and the probable mixing (memory) effect between successive samples. We obtained large amounts of a laboratory working standard (KUW; Korea University Water) with the average ${\delta}D_{SMOW}$ value of $-42.1{\pm}1.0$$(1{\sigma})$.

  • PDF

The Variations of Design Parameters for Small Scale Hydro Power Plant with Rainfall Condition (강우상태에 의한 소수력발전소 설계변수의 변화)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.138-141
    • /
    • 2008
  • The effects of design parameters for small scale hydro power(SSHP) plants due to rainfall condition have been studied. The model to predict hydrologic performance for SSHP plants is used in this study. The results from analysis for rainfall conditions based on Weibull distribution show that the capacity and load factor of SSHP site had large difference between the variation of shape and scale parameter. Especially, the hydrologic performance of SSHP site due to variation of shape parameter varied more sensitive than the case of variation of scale parameter. And also, the methodology represented in this study can be used to decide the primary design specifications of SSHP sites.

  • PDF

우리나라 주요지점에 있어서의 강우해석에 관한 수문통계학적 연구

  • 이원환
    • Water for future
    • /
    • v.5 no.2
    • /
    • pp.30-43
    • /
    • 1972
  • The paper describes on the hydrologic analysis of point rainfall data of the three major areas, such as in Seoul, Pusan and Taegu. Scheme of the paper is analyzed five research cases. Contents of the analysis are carried out five kinds of transformed variables for determination of rainfall distribution types and two kinds of reliability tests on unusual(extraordinary) values each rainfall durations:short durations, long durations, long durations, monthly and yearly. Rainfall depth probability had been computed methods of hydrologic amounts analysis namely logarithmic transformations or Gumbel-Chow method and so on, but in this paper it is calculated log xi, n-square root transformations by using normal distribution function and normalization of rainfall distributions is examined graphical tests and $X^2-test$(chi-square test). Furthermore, rainfall depth probability is calculated taking into account the safty factors of project life of hydraulic structures. We think it is advanced contents that considering priceless experiences, the life of structures, conditions and more problems of planning engineers and designers, proposed rainfall amounts(proposed values) are presented charts or figures.

  • PDF

Analysis of Performance Characteristic for Small Scale Hydro Power Plant with Rainfall Condition Change (강우형태 변화에 의한 소수력발전소 성능특성분석)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.614-618
    • /
    • 2009
  • The effects of design parameters for small scale hydro power(SSHP) plants due to rainfall condition have been studied. The model to predict hydrologic performance for SSHP plants is used in this study. The results from analysis for rainfall conditions based on KIER model show that the capacity and load factor of SSHP site had large difference between the period. Especially, the hydrologic performance of SSHP site such as design flowrate due to rainfall condition of recent period varied sensitively. And also, the methodology represented in this study can be used to decide the primary design specifications of SSHP sites.

  • PDF