• Title/Summary/Keyword: Hydrologic analysis

Search Result 692, Processing Time 0.027 seconds

An Analysis on the Characteristics of the Hydrologic Cycle along Gyeongui Line Forest Park through time series analysis of Biotope Area Ratio and permeable ratio (생태면적률과 투수포장 비율의 시계열 분석을 통한 경의선숲길의 물 순환체계 특성 분석)

  • Kim, Mi-Hu;Oh, Choong-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.3
    • /
    • pp.105-119
    • /
    • 2020
  • The purpose of this study is to analyze the hydrologic cycle environment of Gyeongui Line Forest Park, a linear city park, in order to improve hydrologic cycle systems in urban areas. The method of the study is the Biotope Area Ratio and the Permeable ratio survey. The study subject is the Gyeongui Line Forest Park, created in 2016 as a linear park in Seoul. The results showed that the Biotope Area Ratio improved by 31.2% (31,927㎡) from 35.7% (36,480㎡) in 2000 to 66.9% (68,407㎡) in 2019 on a site area of 102,117㎡. Next, the Permeable ratio improved by 43.8% from 29.0% to 72.8%, and the impermeable ratio decreased by 43.8% from 71.0% to 27.2%. The Biotope Area Ratio exceeded the target ratio of 60% by 6.9%, set by the Ministry of Environment. The ratio of green space exceeded the target ratio of 60%, by 4.0%. And so they contributed to the improvement of the hydrologic cycle by the creation of the Gyeongui Line Forest Park. Urban parks need to exceed the Biotope Area Ratio and the green area ratio of the legal standards, especially when creating large parks of over 100,000 square meters, in the era of climate change. It is necessary to continuously plant trees in the space where trees can be planted, and to contribute to the improvement of the hydrologic cycle system and urban heat island effect by conducting three-dimensional.

Hydrologic Scenarios for Sustained Drought in Han River (한강수계 장기 가뭄 수문시나리오 개발)

  • Lee, Gwang-Man;Cha, Hyung-Sun;Lee, Seung-Yoon
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.6
    • /
    • pp.629-641
    • /
    • 2008
  • Many studies on sustained droughts have often been limited to the analysis of historic flow series. A major disadvantage in this approach can be described as the lack of long historic flow records needed to obtain a significant number of drought events for the analysis. To overcome this difficulty, one of the present study idea is to use synthetically generated hydrologic series. A methodology is presented to develop flow series based on the probabilistic analysis of the stochastic properties of the observed flows. The method can be utilized to generate a flow series of desired length so as to include many multiyear drought events within the process. In this paper, a concept of creating multiyear drought scenarios is introduced, and its development procedure is illustrated by a case study of the water supply system in Han River Basin. Also, it was found that the generated flow series can be reliably used to predict the long drought duration and sustained drought hydrologic scenarios within a given return period.

Computer simulation study to generate an optimal hydrologic model based on the soil properties of the large area plate roof greenery system (대면적 절판지붕용 녹화시스템의 토성기반 수문학적 최적모델 도출을 위한 전산 모의연구)

  • Kim, Tae-Han;Lee, Ji-Won
    • KIEAE Journal
    • /
    • v.16 no.1
    • /
    • pp.73-79
    • /
    • 2016
  • This study aimed to investigate the flood prevention effect expected from the afforestation of a large area metal roof of an industrial complex located in an area prone to floods in the rainwater outflow reduction aspect through computer simulation based on soil, which is a key element of the system. In order to conduct a more realistic simulation, the properties of the surveyed soil were generated through substantive analysis, soil texture analysis, and saxton method. A comparative performance evaluation was conducted by using soil depth and ponding depth, which are key elements of the system, as variables. The study result showed that during the heavy rainfall period, the bottom ash artificial soil had 61% rainwater outflow reduction effect, which was 11% higher than the SWMM standard sand.

Evaluating Applicability of SRTM DEM (Shuttle Radar Topography Mission Digital Elevation Model) in Hydrologic Analysis: A Case Study of Geum River and Daedong River Areas (수문인자추출에서의 SRTM DEM (Shuttle Radar Topography Mission Digital Elevation Model) 적용성 평가: 대동강 및 금강 지역 사례연구)

  • Her, Younggu;Yoo, Seung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.101-112
    • /
    • 2013
  • Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) offers opportunities to make advances in many research areas including hydrology by providing near-global scale elevation measurements at a uniform resolution. Its wide coverage and complimentary online access especially benefits researchers requiring topographic information of hard-to-access areas. However, SRTM DEM also contains inherent errors, which are subject to propagation with its manipulation into analysis outputs. Sensitivity of hydrologic analysis to the errors has not been fully understood yet. This study investigated their impact on estimation of hydrologic derivatives such as slope, stream network, and watershed boundary using Monte Carlo simulation and spatial moving average techniques. Different amount of the errors and their spatial auto-correlation structure were considered in the study. Two sub-watersheds of Geum and Deadong River areas located in South and North Korea, respectively, were selected as the study areas. The results demonstrated that the spatial presentations of stream networks and watershed boundaries and their length and area estimations could be greatly affected by the SRTM DEM errors, in particular relatively flat areas. In the Deadong River area, artifacts of the SRTM DEM created sinks even after the filling process and then closed drainage basin and short stream lines, which are not the case in the reality. These findings provided an evidence that SRTM DEM alone may not enough to accurately figure out the hydrologic feature of a watershed, suggesting need of local knowledge and complementary data.

Assessment of Hydrologic Risk of Extreme Drought According to RCP Climate Change Scenarios Using Bivariate Frequency Analysis (이변량 빈도분석을 이용한 RCP 기후변화 시나리오에 따른 극한가뭄의 수문학적 위험도 평가)

  • Park, Ji Yeon;Kim, Ji Eun;Lee, Joo-Heon;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.561-568
    • /
    • 2019
  • Recently, Korea has suffered from severe droughts due to climate change. Therefore, we need to pay attention to the change of drought risk to develop appropriate drought mitigation measures. In this study, we investigated the changes of hydrologic risk of extreme drought using the current observed data and the projected data according to the RCP 4.5 and 8.5 climate change scenarios. The bivariate frequency analysis was performed for the paired data of drought duration and severity extracted by the threshold level method and by eliminating pooling and minor droughts. Based on the hydrologic risk of extreme drought events Jeonbuk showed the highest risk and increased by 51 % than the past for the RCP 4.5 scenario, while Gangwon showed the highest risk and increased by 47 % than the past for the RCP 8.5 scenario.

Automatic Calibration for Noncontinuous Observed Data using HSPF-PEST (HSPF-PEST를 이용한 불연속 실측치 자동보정)

  • Jeon, Ji-Hong;Lee, Sae-Bom
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.111-119
    • /
    • 2012
  • Applicability of 8 day interval flow data for the calibration of hydrologic model was evaluated using Hydrological Simulation Program-Fortran (HSPF) at Kyungan watershed. The 8 day interval flow monitored by Ministry of Environment located at upstream was calibrated and periodically validated during 2004-2008. And continuous daily flow monitored by Ministry of Construction & Transportation (MOCT) and located at the mouth was compared with daily simulated data during 2004-2007 as spatial validation. Automatic calibration tool which is Model-Independent Parameter Estimation & Uncertainty Analysis (PEST) was applied for HSPF calibration procedure. The model efficiencies for calibration and periodic validation were 0.63 and 0.88, and model performances were fair and very good, respectively, based on criteria of calibration tolerances. Continuous daily stream flow at the mouth of Kyungan watershed were good agreement with observed continuous daily stream flow with showing 0.63 NS value. The PEST program is very useful tool for HSPF hydrologic calibration using non-continuous daily stream flow as well as continuous daily stream flow. The 8 day interval flow data monitored by MOE could be used to calibrate hydrologic model if the continuous daily stream flow is unavailable.

Analysis of the Urbanization Effect on Hydrologic Response

  • Jung, Young-Hun;Kang, Na-Rae;Lee, Seung-Oh;Kim, Hung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.944-944
    • /
    • 2012
  • Urbanization leads to a change of hydrologic responses because impervious area is increased by urbanization. Decrease of groundwater recharge and increase of overland flow are general hydrologic characteristics caused by urbanization. This can be a source of damages such as increased flooding and reduced groundwater levels. Daily streamflow in Gabcheon watershed, South Korea is simulated by ARCSWAT model, an extension of SWAT2005. After calibration and validation of model, the simulated daily streamflow from 1997 to 2001 are statistically analyzed. The phenomenon that $T_{Qmean}$ is inversly proportional to coefficient of variation for the simulated daily streamflow is demonstrated. Also, hydrologic response was more influenced by weather than land use for high flow. This study also examines the effect of land use change on daily streamflow with spatially and quantitatively different land use maps. The simulated stream flow is tested by Mann-Whitney method. The median between stream flows simulated for 1990 and 2000 land use maps is significantly different, but the simulated streamflow for spatially different land use maps is almost unchanged.

  • PDF

Hydrologic Monitoring Analysis due to Hydrologic Characteristic Variation at Urban Stream (도시하천 수문특성변화에 따른 수문모니터링 분석)

  • Seo, Kyu-Woo;Kim, Dai-Gon;Kim, Nam-Gil;Sim, Bong-Joo;Won, Chang-Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.746-751
    • /
    • 2006
  • The geumjunggu of the onchunchun which is the upper stream have been maintained as a too much picture to become a concrete lining about existing low flow channel and the reservoir water protecting banks for the reason of the flow of an upper stream steep slope and back of the shortage of the channel area in a suitableness interval. This research made a rating-curve to decide since to ensure against risks to the flood control through the undo of the rivers. And we found the speed of current of a nature undo interval and existing concrete interval and water level change out. A result from this natural disposition we must apply as a data for the research about the plan to be established in the rivers maintenance basis plan of onchunchun.

  • PDF