• 제목/요약/키워드: Hydrologic Time Series

검색결과 86건 처리시간 0.023초

Singular Spectrum Analysis를 이용한 수문 시계열 예측에 관한 연구 (A Study of the Forecasting of Hydrologic Time Series Using Singular Spectrum Analysis)

  • 권현한;문영일
    • 대한토목학회논문집
    • /
    • 제26권2B호
    • /
    • pp.131-137
    • /
    • 2006
  • 본 연구에서는 기존 매개변수적 수문시계열 예측모형을 보완하고자 Singular Spectrum Analysis(SSA)와 Linear Recurrent Formula를 결합한 모형을 제안하였다. SSA는 주로 시계열에 내재해 있는 구성성분을 추출하기 위한 목적으로 많이 이용되고 있다. 이러한 관점에서 본 연구에서는 엘니뇨 및 라니냐 등의 기상현상과 수문사상의 상관성 분석에 주로 적용되고 있는 SSA와 시계열 예측을 위해서 Linear Recurrence Formula를 결합한 예측 모형을 월단위의 수위와 유입량 시계열 자료를 대상으로 적용성 및 타당성을 검토해 보았다. 모형을 통해 수문시계열을 모의한 결과 전체적인 통계적인 특성 및 시각적인 검토에서 실측자료와 매우 유사한 모의가 가능하였으며 실측 자료를 바탕으로 Blind Forecasting을 실시한 결과 2가지 예에서 모두 1년 정도의 예측구간에서 합리적인 결과를 제시하여 주었다. 따라서 단기예측을 수문모형으로서 적용이 가능할 것으로 사료된다.

시계열 수문자료의 비선형 상관관계 (How to Measure Nonlinear Dependence in Hydrologic Time Series)

  • 문영일
    • 한국수자원학회논문집
    • /
    • 제30권6호
    • /
    • pp.641-648
    • /
    • 1997
  • 상관계수가 변수간의 선형 상관관계를 나타내듯이 mutual information은 변수간의비선형 상관관계를 나타내준다. 본 논문에서는 mutual information 추정법으로 다변수 핵 미도함수(multivariate kernel density estimator)를 이용한 방법이 여러 time lags값에 대하여 산정 되었다. 많은 수문자료에서 보여지는 비선형 관계를 Mutual Information으로 확인하여 보았고, 또한 Mutual Information값이 거의 0인 점에서 optimal delay time을 구하여, 하나의 자료로부터 다변수 회귀분석 모델을 만들 때 이용할 수 있다.

  • PDF

BDS 통계와 DVS 알고리즘을 이용한 수문시계열의 비선형성 분석 (Detecting Nonlinearity of Hydrologic Time Series by BDS Statistic and DVS Algorithm)

  • 최강수;경민수;김수전;김형수
    • 대한토목학회논문집
    • /
    • 제29권2B호
    • /
    • pp.163-171
    • /
    • 2009
  • 수문시계열 분석과 예측을 위하여 통상적으로 기존의 선형적인 모형들을 이용하여 왔다. 그러나 최근 자연현상이나 수문시계열의 패턴 그리고 변동성에 비선형구조가 존재하고 있다는 것이 입증되고 있다. 따라서 기존의 선형적인 방법들에 의한 시계열분석이나 예측은 비선형 시스템에 대해서 적절하지 않을 것이다. 최근, 시계열의 비선형성 구조를 판단하기 위해 카오스 이론을 토대로 한 상관적분으로부터 BDS(Brock-Dechert-Scheinkman) 통계 기법이 유도되었다. BDS 통계는 시스템의 비선형구조와 무작위성 구조를 구별하는데 매우 효과적으로 이용되어 오고 있다. 또한 DVS(Deterministic Versus Stochastic) 알고리즘은 카오스와 추계학적 시스템을 구별하고 예측하는데 주로 이용되어 왔다. 그러나 본 연구에서는 DVS 알고리즘에 의해 시계열의 비선형성을 판별할 수 있음을 보이고자 한다. 따라서 본 연구에서는 추계학적 시계열과 수문학적 시계열들의 비선형성을 검사하고자 한다. ARMA 모형과 TAR(Threshold autoregressive) 모형으로부터로 발생시킨 추계학적 시계열, 미국 유타주 GSL 체적자료, 미국 플로리다 주 St. Johns 강 Cocoa 지점의 유출량 자료, 소양강 댐 일 유입량 자료 등의 수문시계열에 대해 비선형성 분석을 수행하고 그 결과를 비교하였다. 분석결과 BDS 통계가 선형 및 비선형 시계열을 구분하는데 매우 강력한 도구임을 보였고, DVS 알고리즘 또한 시계열의 비선형성을 구별하는데 효과적으로 이용될 수 있음을 보였다.

자기상관함수의 비선형 유추 해석 (Nonlinear Analog of Autocorrelation Function)

  • 김형수;윤용남
    • 한국수자원학회논문집
    • /
    • 제32권6호
    • /
    • pp.731-740
    • /
    • 1999
  • 자기상관함수는 수문시계열의 선형상관 관계를 나타내는 척도롤 널리 이용되고 있다. 그러나 비선형 동역학에서 필수적인 지체시간 또는 무상관시간 $\tau$d를 산정하는데는 적합하지 않을수도 있기 때문에 비선형 상관관계의 척도로 상호정보이론이 추천되어 왔다. 최근에 일부 학자들은 카오스 동역학 분석을 위하여 지체신간 $\tau$d대신에 상태 공간상에 구축된 각 상태 벡타점 성분들의 총시간을 표시하는 지체시간창을 제안하였다. 그러나 지체신간창은 자기상관함수나 상호정보이론에 의해 추정될 수 없다. 기본적으로 지체신간창은 시계열 자료의 상관관계가 가장 작을 최적시간이며 지체시간은 국지적인 최소값 중 첫 번째의 최적시간이다. 본 연구에서는 수문시계열의 지체시간과 지체사간창을 구하기 위하여 C-C밥법이라는 기법을 이용하고, 여기에서 산정된 값들을 근거로 수문시계열의 모형화와 예측에 중요한 선형 또는 비선형 종속성을 파악하고자 한다.

  • PDF

대체함수에 의한 수문 시계열 모형 (Hydrologic Time Series Model by Transfer Function)

  • 강관원;김주환
    • 물과 미래
    • /
    • 제24권3호
    • /
    • pp.61-70
    • /
    • 1991
  • 본 연구는 이산형 선형 대체함수(discrete linear transfer function)를 이용하여 수문시스템의 입력과 출력으로 나타낼 수 있는 강우와 유출의 관계를 통계학적으로 분석하고 모형화 하는 것이다. 모형의 설정 및 특정(identification), 추정(estimation) 및 검토(diagnostic checking) 과정이 제시되었으며 모형에 대한 적합성은 시계열 분석에서 이용되고 있는 통계량으로 판정하였다.

  • PDF

GIS를 이용한 기저-유출 바탕의 수문모델 (Store-Release based Distributed Hydrologic Model with GIS)

  • 강광민;윤세의
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.35-35
    • /
    • 2012
  • Most grid-based distributed hydrologic models are complex in terms of data requirements, parameter estimation and computational demand. To address these issues, a simple grid-based hydrologic model is developed in a geographic information system (GIS) environment using storage-release concept. The model is named GIS Storage Release Model (GIS-StoRM). The storage-release concept uses the travel time within each cell to compute howmuch water is stored or released to the watershed outlet at each time step. The travel time within each cell is computed by combining the kinematic wave equation with Manning's equation. The input to GIS-StoRM includes geospatial datasets such as radar rainfall data (NEXRAD), land use and digital elevation model (DEM). The structural framework for GIS-StoRM is developed by exploiting geographic features in GIS as hydrologic modeling objects, which store and process geospatial and temporal information for hydrologic modeling. Hydrologic modeling objects developed in this study handle time series, raster and vector data within GIS to: (i) exchange input-output between modeling objects, (ii) extract parameters from GIS data; and (iii) simulate hydrologic processes. Conceptual and structural framework of GIS StoRM including its application to Pleasant Creek watershed in Indiana will be presented.

  • PDF

하천유역에서 기후변화에 따른 이상호우시의 최적 수문예측시스템 (The Optimal Hydrologic Forecasting System for Abnormal Storm due to Climate Change in the River Basin)

  • 김성원;김형수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.2193-2196
    • /
    • 2008
  • In this study, the new methodology such as support vector machines neural networks model (SVM-NNM) using the statistical learning theory is introduced to forecast flood stage in Nakdong river, Republic of Korea. The SVM-NNM in hydrologic time series forecasting is relatively new, and it is more problematic in comparison with classification. And, the multilayer perceptron neural networks model (MLP-NNM) is introduced as the reference neural networks model to compare the performance of SVM-NNM. And, for the performances of the neural networks models, they are composed of training, cross validation, and testing data, respectively. From this research, we evaluate the impact of the SVM-NNM and the MLP-NNM for the forecasting of the hydrologic time series in Nakdong river. Furthermore, we can suggest the new methodology to forecast the flood stage and construct the optimal forecasting system in Nakdong river, Republic of Korea.

  • PDF

시간지체 순환신경망모형을 이용한 수문학적 모형화기법 (Hydrologic Modeling Approach using Time-Lag Recurrent Neural Networks Model)

  • 김성원
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.1439-1442
    • /
    • 2010
  • Time-lag recurrent neural networks model (Time-Lag RNNM) is used to estimate daily pan evaporation (PE) using limited climatic variables such as max temperature ($T_{max}$), min temperature ($T_{min}$), mean wind speed ($W_{mean}$) and mean relative humidity ($RH_{mean}$). And, for the performances of Time-Lag RNNM, it is composed of training and test performances, respectively. The training and test performances are carried out using daily time series data, respectively. From this research, we evaluate the impact of Time-Lag RNNM for the modeling of the nonlinear time series data. We should, thus, construct the credible data of the daily PE using Time-Lag RNNM, and can suggest the methodology for the irrigation and drainage networks system. Furthermore, this research represents that the strong nonlinear relationship such as pan evaporation modeling can be generalized using Time-Lag RNNM.

  • PDF

수문 및 기후 자료에 대한 선형 경향성 및 평균이동 분석 (Trend and Shift Analysis for Hydrologic and Climate Series)

  • 오제승;김형수;서병하
    • 대한토목학회논문집
    • /
    • 제26권4B호
    • /
    • pp.355-362
    • /
    • 2006
  • 본 연구에서는 수문 및 기후 시계열 자료에 존재하는 경향성을 분석하기 위하여 MK 검정, Spearman's Rho 검정, Linear Regression 검정, 비모수 Cusum 검정, Cumulative Deviation 검정, Worsley Likelihood Ratio 검정, Rank Sum 검정, Student's t 검정 등의 8가지 기법을 사용하였다. 관측된 연 강우량과 유입량 시계열 자료, 나이테 자료 그리고 SOI 자료에 적용하여 그 결과를 비교 분석 하였다. 분석 결과 시계열 자료에는 어떤 기울기를 가지거나 어느 시점을 기준으로 평균이 변화하는 두 가지의 경향성이 존재함을 확인 할 수 있었다. 경향성을 나타낸 8개의 강우자료중 4개 지점이 평균이동(shift)을 나타내었으며, 18개 지역의 나이테 지수중 8개 지역과 월별 SOI자료 중 3, 4월자료에서 경향성의 존재가 확인되었고, 소양강댐 유입량 자료에서는 경향성이 나타나지 않았다. 특히, 나이테 지수의 경우에는 평균이동으로 인한 경향성만을 가지고 있는 자료가 확인되었다. 또한 정상성 검정을 위한 ADF 검정과 비선형성 검정을 위한 BDS 통계검정 기법을 적용하였다. 본 연구를 통하여 여러 경향성 분석 기법을 비교할 수 있었으며, 실제 관측된 수문 및 기후 시계열에 존재하는 경향성을 확인 할 수 있었고, 연구 결과를 통하여 수문시계열 해석시 다양한 분석을 통한 경향성의 존재여부를 확인 하여야 한다는 것을 알 수 있었다.

경험적 모드분해법을 이용한 시계열 모형의 예측력 개선에 관한 연구 (A Study on the Predictive Power Improvement of Time Series Model with Empirical Mode Decomposition Method)

  • 김태림;신홍준;남우성;허준행
    • 한국수자원학회논문집
    • /
    • 제48권12호
    • /
    • pp.981-993
    • /
    • 2015
  • 수문 시계열의 분석은 수문자료를 활용한 수자원의 효율적인 운영 및 관리에 필수적인 부분이며, 특히 장기적인 수문량 예측에 널리 활용되고 있다. 이러한 수문 시계열 분석은 전통적으로 하나의 자료계열을 하나의 요인으로 파악하여 자료를 분석하고 예측해왔지만 시계열 자료가 여러 가지 요인으로 혼합되 어 하나의 자료계열로 나타내질 수 있다는 가정 하에 각 요인들을 분해하여 분석하는 방법도 널리 연구되고 있다. 본 연구에서는 경험적 모드분해법을 이용하여 주어진 수문 시계열을 다중 성분으로 분해하고 분해된 각 요소를 시계열 모형으로 재구축한 후, 구축된 요소별 시계열 모형으로부터 예측된 값을 합하여 시계열을 예측하는 방법을 이용하였으며 이를 국내 댐 유입량에 적용한 후 그 결과를 나타내었다. 기존 시계열 모형과 경험적 모드분해법을 이용한 방법의 정확도를 비교한 결과, 기존의 시계열 모형을 이용하여 자료를 예측한 결과보다 경험적 모드분해법을 적용하여 자료를 분해한 후 시계열 자료를 예측한 결과가 주어진 시계열 자료를 더 잘 나타내는 것을 알 수 있었다.