• Title/Summary/Keyword: Hydrologic Properties

Search Result 65, Processing Time 0.032 seconds

Properties of Hydrologic Cycle in Catchments in Different Land Use and Runoff Analysis by a Lumped Parametric Model

  • Takase, Keiji
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.S1
    • /
    • pp.48-56
    • /
    • 2000
  • In this paper, properties of hydrologic cycle in three experimental catchments were compared and different types of a lumped parametric model were applied to understand the hydrologic cycle in the catchments. One of them is a forest catchment and another one includes the reclained upland fields and last one does terraces paddy fields. The comparison of hydrologic properties showed that the differences in land used have great influences on the soil properties of surface layer, which cause changes in hydrologic processes such as evapotranspiration and storm runoff et.al. By the runoff analysis models, good agreements between observed and calculated discharge from the catchments were obtained and it was found that the differences in values of optimized model parameters and water budget components reflect those in the hydrologic cycle among them.

  • PDF

Properties of Hydrologic Cycle in Catchments in Different Land Use and Runoff Analysis by a Lumped Parametric Model

  • Keiji Takase
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2000.05a
    • /
    • pp.48-56
    • /
    • 2000
  • In this paper, properties of hydrologic cycle in three experimental catchments were compared and different types of a lumped parametric model were applied to understand the hydrologic cycle in the catchments. One of them is a forest catchment and another one includes the reclaimed upland fields and last one does terraces paddy fields. The comparison of hydrologic properties showed that the differences in land use have great influences on the soil properties of surface layer, which changes in hydrologic processes such as evapotranspiration and storm runoff et. al. By the runoff analysis models, good agreements between observed and calculated discharge from the catchments were obtained and it was found that the differences in values of optimized model parameters and water budget components reflect those in the hydrologic cycle among them.

  • PDF

Analysis of Behavioral Properties for Hydrologic Response Function according to the Interaction between Stream Network and Hillslope (하천망과 구릉지사면 사이의 상호작용에 따른 수문학적 응답함수의 거동특성 분석)

  • Yoon, Yeo Jin;Kim, Joo Cheol
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.661-669
    • /
    • 2011
  • The purpose of this study is quantitative analysis of the effects of the interactions between stream network and hillslope to hydrologic response functions. To this end general formulation of hydrologic response function is performed based on width function and grid framework. Target basins are Ipyeong and Tanbu basins. From the results of width function estimation even similar sized and closely located basins could have very different hydrologic response function. It is found out that the interactions between stream network and hillslope are essential factors of rainfall-runoff processes because their difference can make the hydrologic response function with positive skewness. The change of velocities of stream network and hillslope might influence the magnitude of peak but time to peak tends to more sensitively respond to velocities of stream network. Lag time of basin would be the result of complex interaction between drainage structures and dynamic properties of river basin.

Computer simulation study to generate an optimal hydrologic model based on the soil properties of the large area plate roof greenery system (대면적 절판지붕용 녹화시스템의 토성기반 수문학적 최적모델 도출을 위한 전산 모의연구)

  • Kim, Tae-Han;Lee, Ji-Won
    • KIEAE Journal
    • /
    • v.16 no.1
    • /
    • pp.73-79
    • /
    • 2016
  • This study aimed to investigate the flood prevention effect expected from the afforestation of a large area metal roof of an industrial complex located in an area prone to floods in the rainwater outflow reduction aspect through computer simulation based on soil, which is a key element of the system. In order to conduct a more realistic simulation, the properties of the surveyed soil were generated through substantive analysis, soil texture analysis, and saxton method. A comparative performance evaluation was conducted by using soil depth and ponding depth, which are key elements of the system, as variables. The study result showed that during the heavy rainfall period, the bottom ash artificial soil had 61% rainwater outflow reduction effect, which was 11% higher than the SWMM standard sand.

A Study of the Forecasting of Hydrologic Time Series Using Singular Spectrum Analysis (Singular Spectrum Analysis를 이용한 수문 시계열 예측에 관한 연구)

  • Kwon, Hyun-Han;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2B
    • /
    • pp.131-137
    • /
    • 2006
  • We have investigated the properties of the Singular Spectrum Analysis (SSA) coupled with the Linear Recurrent Formula which made it possible to complement the parametric time series model. The SSA has been applied to extract the underlying properties of the principal component of hydrologic time series, which can often be identified as trends, seasonalities and other oscillatory series, or noise components. Generally, the prediction by the SSA method can be applied to hydrologic time series governed (may be approximately) by the linear recurrent formulae. This study has examined the forecasting ability of the SSA-LRF model. These methods were applied to monthly discharge and water surface level data. These models indicated that two of the time series have good abilities of forecasting, particularly showing promising results during the period of one year. Thus, the method presented in this study suggests a competitive methodology for the forecast of hydrologic time series.

Simulation of Hydrological and Sediment Behaviors in the Doam-dam Watershed considering Soil Properties of the Soil Reconditioned Agricultural Fields (객토 농경지의 토양특성을 고려한 도암댐 유역에서의 수문 및 유사 거동 모의)

  • Heo, Sung-Gu;Kim, Jae-Young;Yoo, Dong-Sun;Kim, Ki-Sung;Ahn, Jae-Hun;Yoon, Jong-Suk;Lim, Kyoung-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.2
    • /
    • pp.49-60
    • /
    • 2007
  • The alpine agricultural activities are usually performed at higher and steep areas in nature. Thus, significant amounts of soil erosion are occurring compared with those from other areas. Thus, the soil erosion induced environmental impacts in these areas are getting greater. The Doam watershed is located at alpine areas and it has been well known that the agricultural activities in the watershed are causing accelerated soil erosion and water quality degradations. Many modeling approaches were employed to solve soil erosion and water quality issues. In this study, the Soil and Water Assessment Tool (SWAT) model was utilized to simulate the hydrologic and sediment behaviors in the Doam watershed. In many previous modeling studies, the digital soil map and its corresponding soil properties were used without modification to reflect soil conditioning at many agricultural fields of the Doam watershed. Thus, the soil sample was taken at the agricultural field within the Doam watershed and analyzed for its physical properties. In this study, the digital topsoil properties in the agricultural fields within the Doam watershed were replaced with the soil properties for reconditioned soil analyzed in this study to simulate the impacts of using soil properties for reconditioned soil in hydrologic and sediment modeling at the Doam watershed using the SWAT model. The hydrologic component of the SWAT model was calibrated and validated for measured flow data from 2002 to 2003. The $R^2$ value was 0.79 and the EI value was 0.53 for weekly simulated data. The calibrated model parameters were used for hydrologic component validation and the $R^2$ value was 0.86 and the EI value was 0.74 for weekly data. For sediment comparison, the $R^2$ value was 0.67 and the EI value was 0.59. These statistics improved with the use of soil properties of the reconditioned soil in the field compared with the results obtained without considering soil reconditioning. The simulated sediment amounts with and without considering the soil properties of the reconditioned soil were 284,813 ton and 158,369 ton, respectively. This result indicates that there could be approximately 79% of errors in estimated sediment yield at the Doam watershed, although the model comparison with the measured data gave similar satisfactory statistics with and without considering soil properties from the reconditioned soil.

A Programming of Hydrologic Analysis Procedure for the Probable Isohyetal Chart in Korea (한국 확률강우량도 작성을 위한 수문해석방법 개발)

  • 이원환
    • Water for future
    • /
    • v.20 no.2
    • /
    • pp.139-150
    • /
    • 1987
  • The present study is to develop the hydrologic analysis procedure for the purpose of drawing the probable isohyetal charts in Korea. In the establishment of optimal distribution types, the eleven continuous probability distribution types included the transformed variable normal distribution (Y-k method) is applied to the annual maximum rainfall depth series in each duration. The optimal selection of distribution is done by Chi-square test and Kolmogorov-Smirnov test in the eui-class interval. The application of probability distribution is checked by the fitting on four durations of annual maximum rainfall data(10 min., 60 min., 6 hrs., and 24hrs.) at four meteorological stations in Korea (Seoul, In Cheon, Bu san, and Kwang Ju). The properties in hydrologic application of the considered distribution and the hydrologic characteristics of the applied rainfall data groups are investigated from the results of this study.

  • PDF

Spatial and Seasonal Variability of Soil Moisture Properties along Transect Line on a Forest Hillslope in the Cheong-Mi Catchment (청미천 유역 내 산림사면에서 단면선에 따른 토양수분특성의 공간적 계절적 변동)

  • Gwak, Yong-Seok;Kim, Sang-Hyun;Jung, Sung-Won;Lee, Yeon-Gil;Lee, Jung-Hoon;Kim, Su-Jin
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.1
    • /
    • pp.45-57
    • /
    • 2015
  • Soil moisture is critical for understanding the spatial-temporal variability of hydrologic processes. The distributions of soil moisture have been explored along transect line in hillslope hydrology. In this study, we measured several soil moistures along transect lines during ten-month period at a hillslope located the Cheong-mi catchment. The soil moisture properties were expressed by simple statistical methods (average, standard deviation, and recession slope) and analyzed in terms of soil depths and transects from the seasonal context. Supplementary studies were also performed about the effect of location, topography and soil texture to the soil moisture responses. The spatial distributions of average soil moisture at deep soil layer were distinguished from those at near surface due to the possibility of expected factors such as subsurface lateral flow from upslope, preferential flow and existence of bedrock. The soil moistures in combined line affected from significant contribution of upper transect line were relatively higher(wetter), low variability compared to those in other transect lines and seemed to be under stabilization process. There are confirmed heterogeneity of soil moisture variation related with preferential flow and significant influence of soil texture for soil moisture properties in upslope.

Hydrologic Scenarios for Sustained Drought in Han River (한강수계 장기 가뭄 수문시나리오 개발)

  • Lee, Gwang-Man;Cha, Hyung-Sun;Lee, Seung-Yoon
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.6
    • /
    • pp.629-641
    • /
    • 2008
  • Many studies on sustained droughts have often been limited to the analysis of historic flow series. A major disadvantage in this approach can be described as the lack of long historic flow records needed to obtain a significant number of drought events for the analysis. To overcome this difficulty, one of the present study idea is to use synthetically generated hydrologic series. A methodology is presented to develop flow series based on the probabilistic analysis of the stochastic properties of the observed flows. The method can be utilized to generate a flow series of desired length so as to include many multiyear drought events within the process. In this paper, a concept of creating multiyear drought scenarios is introduced, and its development procedure is illustrated by a case study of the water supply system in Han River Basin. Also, it was found that the generated flow series can be reliably used to predict the long drought duration and sustained drought hydrologic scenarios within a given return period.

Analysis of Annual Hydrologic Series by Runs (Runs에 의한 연수문계열의 해석)

  • Kang, Kwan-Won;Ahn, Kyung-Soo;Kim, Ju-Hwan
    • Water for future
    • /
    • v.21 no.1
    • /
    • pp.77-86
    • /
    • 1988
  • The main objective of this paper is to study the application of runs to the analysis of hydrologic data. The stochastic structure of annual hydrologic data is investigated using the statistical properties of run-length for various truncation levels. Observed relative frequencies of run-length at each station are copared with the calculated and approched to the calculated. Also, it can be shown to estimate the durations of wet and dry years by the probabilities of run-length for a given truncation level. Annual precipitation data were obtained from the stations where have relatively long records, and stream flow data were generated by Markov model. The results of hypothesis test with run-lengths show independence of annual hydrologic series and Markov model can be applied to generate annual stream flow at Hyunpung, Waekwan and Gyuam.

  • PDF