• Title/Summary/Keyword: Hydrogen vehicle

Search Result 336, Processing Time 0.03 seconds

Study of KMVSS for Hydrogen Fuel Cell Vehicle (수소연료전지자동차에 대한 안전기준 고찰)

  • Yong, Gee Joong;Lee, Kwang Bum;Kwon, Hae Boung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.2
    • /
    • pp.72-77
    • /
    • 2014
  • In the ongoing debates over the need to identify new sources of energy and to reduce the emissions of greenhouse gases. Hydrogen has emerged as one of the most promising alternatives due to its emissions from the vehicle being virtually zero. The governments have identified the development of regulations and standards as one of the key requirements for commercialization of hydrogen-fueled vehicles. Regulations and standards will helpful in overcoming technological barriers to commercialization. Developments of a technique for safety assessment of Hydrogen Fuel Cell Vehicle(HFCV) includes four tasks, research for regulation system and policy, hydrogen safety, vehicle operation safety and protection against high-voltage. The objective is to establish a technique for safety assessment and amend safety standards for HFCV and consequently reflect research results to vehicle management policy. We devised safety standards and evaluation techniques with regard to high-pressure gas and high voltage of hydrogen fuel cell vehicle. Korean Motor Vehicle Safety Standards(KMVSS) for HFCV was amended to June 10, 2014. including the results of the safety assessment technology for high-voltage and hydrogen characteristics.

An Experimental Study on the Explosion of Hydrogen Tank for Fuel-Cell Electric Vehicle in Semi-Closed Space (반밀폐공간에서 발생되는 차량용 수소연료탱크 폭발 실험)

  • Park, Jinouk;Yoo, Yongho;Kim, Hwiseong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.73-80
    • /
    • 2021
  • Recently, Korea has established a plan for the supply of hydrogen vehicles and is promoting the expansion of the supply. Risk factors for hydrogen vehicles are hydrogen leakage, jet fire, and explosion. Therefore Safety measures are necessary for this hazard. In addition, risks in semi-closed spaces such as tunnels, underground roads, and underground parking lots should be analyzed. In this study, an explosion experiment was conducted on a hydrogen tank used in a hydrogen vehicle to analyze the risk of a hydrogen vehicle explosion accident that may occur in a semi-closed space. As results, the effect on the structure and the human body was analyzed using the overpressure and impulse values for each distance generated during the explosion.

Development of Accident Scenarios for Hydrogen Refueling Station and Fuel Cell Vehicle (수소충전소 및 수소자동차의 사고 시나리오 개발)

  • Byoungjik Park;Yangkyun Kim;Ohk Kun Lim
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.1
    • /
    • pp.27-34
    • /
    • 2023
  • The registration rate of eco-friendly vehicles, such as hydrogen vehicles, is increasing rapidly, however, few first responders have experienced related accidents. Accident scenarios at hydrogen refueling stations and hydrogen vehicles on a road were investigated, and the relative importance of each scenario was analyzed using AHP analysis. Leakage, jet flame, and explosion that occurred inside and outside the hydrogen refueling station were reviewed, and the hydrogen gas explosion in the compartment showed the highest importance value. In case of the hydrogen vehicle, traffic accident statistics and actual accidents were used. It was analyzed that the hydrogen vessel explosion on the road due to the failure of TPRD and the leakage in the underground parking area were difficult to respond. The developed accident scenarios are expected to be used for first responder training.

The Strategy Plans for Practical use of Hydrogen Fueled Vehicles in Domestic (국내의 수소 자동차 실용화를 위한 전략 방안)

  • Lee, Kwang-Ju;Lee, Jong-Tae;Yong, Gee-Joong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.4
    • /
    • pp.346-353
    • /
    • 2010
  • Hydrogen fueled vehicle was evaluated as one of the next-generation technology that will be able to solve the global warming, depletion of fossil fuel and etc. The practical use of hydrogen fueled vehicle, nevertheless, is being delayed more than expected schedule due to various causes. In order to promote the dissemination of hydrogen fueled vehicle, development status and obstacle factors of practical use for hydrogen fueled vehicles were reviewed and the strategy plans for dissemination promotion were proposed. Hydrogen fueled vehicles are included the hydrogen fuel cell, neat and enriched hydrogen fueled engines. The technicalness, economy, safety, cognizance, system, support and etc were considered in the strategy plans.

Study on Development of the Isolation Resistance Measurement System for Hydrogen Fuel Cell Vehicle (수소연료전지자동차용 절연저항 측정시스템 개발에 관한 연구)

  • Lee, Ki-Yeon;Kim, Dong-Ook;Moon, Hyun-Wook;Kim, Hyang-Kon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.1068-1072
    • /
    • 2011
  • Hydrogen Fuel Cell Vehicle(HFCV) is system that uses electrical energy of fuel cell stack to main power source, which is different system with other vehicles that use high-voltage, large-current. Isolation performance of this system which is connected with electrical fire and electrical shock is important point. Isolation resistance of electric installation is divided according to working voltage, it follows criterion more than $100{\Omega}$/VDC (or $500{\Omega}$/VAC) about system operation voltage in a hydrogen fuel cell vehicle. Although measurement of isolation resistance in a hydrogen fuel cell vehicle is two methods, it uses mainly measurement by megger. However, the present isolation resistance measurement system that is optimized to use in electrical facilities is unsuitable for isolation performance estimation of a hydrogen fuel cell vehicle because of limit of maximum short current and difference of measurement resolution. Therefore, this research developed the isolation resistance measurement system so that may be suitable in isolation performance estimation of a hydrogen fuel cell vehicle, verified isolation performance about known resistance by performance verification of laboratory level about developed system, and executed performance verification through comparing results of developed system by performance verification of vehicle level with ones of existing megger. Developed system is judged to aid estimation and upgrade of isolation performance in a hydrogen fuel cell vehicle hereafter.

Modeling of Hydrogen Recirculation System for Fuel Cell Vehicle (수소 연료전지차의 재순환시스템 모델링 연구)

  • Kim, Jae-Hoon;Noh, Young-Gyu;Jeon, Ui-Sik;Lee, Jong-Hyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.481-487
    • /
    • 2011
  • A fuel cell vehicle using a polymer electrolyte membrane fuel cell (PEM FC) as power source produces electric power by consuming the fuel, hydrogen. The unconsumed hydrogen is recirculated and reused to gain higer stack efficiency and to maintain the humidity in the anode side of the stack. So it is needed considering fuel efficiency to recirculated hydrogen. In this study, the indirect hydrogen recirculation flow rate measurement method for fuel cell vehicle is presented. By modeling of a convergent nozzle ejector and a hydrogen recirculation blower for the hydrogen recirculation of a PEM FC, the hydrogen recirculation flow rate was calculated by means of the mass balance and heat balance at Anode In/Outlet.

The Evaluation of Reliability for the High Pressure Hydrogen Storage System of Fuel Cell Vehicle (연료전지자동차의 고압수소저장시스템 신뢰성 평가)

  • Jang, Gyu-Jin;Choi, Young-Min;Ahn, Byung-Ki;Lim, Tae-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.4
    • /
    • pp.266-275
    • /
    • 2008
  • The performance improvement of each part for durability, safety and cost of high pressure storage system for fuel cell vehicle has been focused so far. However, for the mass production of fuel cell vehicle, it is necessary to evaluate durability and safety in system module and vehicle level. The test procedure to evaluate vibration and collision safety of high pressure hydrogen storage system for the fuel cell vehicle is established and its reliability is verified.

A Study on Safety Improvement for Mobile Hydrogen Refueling Station by HAZOP Analysis (위험과 운전 분석을 통한 이동식 수소충전소 안전성 향상에 관한 연구)

  • BYUN, YOON-SUP
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.299-307
    • /
    • 2021
  • In order to expand the supply of hydrogen vehicles, the first thing to be done is to build an infrastructure to supply hydrogen. There are fixed and mobile types of hydrogen refueling stations that can supply hydrogen. Mobile hydrogen refueling stations have the advantage of supplying hydrogen to two or three areas, so the introduction of mobile hydrogen refueling stations is considered at the initial stage of hydrogen vehicle dissemination. However, mobile hydrogen refueling stations have greater risks than fixed hydrogen refueling stations due to the hazard associated with movement and intensive installation of facilities in vehicle, so stricter design standards to lower the risk must be applied. Therefore, in this study, basic data for establishing safety standards for mobile hydrogen refueling stations were proposed by suggesting improvements such as the location of emergency shutoff valves, the number of gas detectors etc., using HAZOP analysis.

The Evaluation of Hydrogen Leakage Safety for the High Pressure Hydrogen System of Fuel Cell Vehicle (연료전지자동차의 고압수소저장시스템 수소 누출 안전성 평가)

  • Kim, Hyun-Ki;Choi, Young-Min;Kim, Sang-Hyun;Shim, Ji-Hyun;Hwang, In-Chul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.316-322
    • /
    • 2012
  • A fuel cell vehicle has the hydrogen detection sensors for checking the hydrogen leakage because it use hydrogen for its fuel and can't use a odorant to protect the fuel cell stack. To verify the hydrogen safety of leakage we select the high possible leak points of fittings in hydrogen storage system and test the leaking behavior at them. The hydrogen leakage flow rate is 10, 40, 118 NL/min and the criterion for maximum hydrogen leakage is based on allowing an equivalent release of combustion energy as permitted by gasoline vehicles in FMVSS301. There are total 18EA hydrogen leakage detection sensors installed in test system. we acquire the hydrogen leakage detection time and determine the ranking. Hydrogen leakage detection time decrease when hydrogen leakage flow rate increase. The minimum hydrogen leakage detection time is about 3 seconds when the flow rate is 118NL/min. In this study, we optimize hydrogen sensor position in fuel cell vehicle and verify the hydrogen leakage safety because there is no inflow inside the vehicle.

The Analysis of Emergency Response Guide for Hydrogen Fuel Cell Vehicle (수소연료전지 자동차의 긴급대응 가이드 분석)

  • Lee, Kwang-Ju;Lee, Jong-Tai;Yong, Gee-Joong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.2
    • /
    • pp.156-161
    • /
    • 2012
  • In case of commercializing of the hydrogen fuel cell vehicle, the suitable emergency response guide is necessary to prepare an accident. In order to suggest the suitable guide for the domestic affairs, the existing external guide about GM, Ford, Honda, and Hyundai was reviewed. The emergency response guides in CAFCP and main FC vehicle makers were included in the analysis. As the results, it was found that the design and make of vehicle for the domestic user are demanded in the emergency response and the guide is made with the shut-down manual picked out for the rescuer and repair man as well as user.