• 제목/요약/키워드: Hydrogen transfer

검색결과 544건 처리시간 0.032초

A Study of Application on the Pulsating Heat Pipe for Heat Transfer Enhancement of Metal Hydride Alloy (수소 저장합금층의 열전달 촉진을 위한 진동형 히트 파이프 적용에 관한 연구)

  • Lee, Min-Jae;Im, Yong-Bin;Bae, Sang-Chul;Kim, Jong-Soo
    • Proceedings of the SAREK Conference
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.346-351
    • /
    • 2006
  • When metallic alloys are reacted to hydrogen, heat transfer of storage tank effects hydrogen storage rate and capacity. If pulsating heat pipe are used to improve heat transfer efficiency, production of hydrogen storage tank can be more simple and economical. Experiment of heat pipe was conducted by varying working fluids and heat flux. According to supply heat flux, test indicate that R-22 and R-l42b were found lower temperature difference between evaporator and condenser than R-134a and Ethanol. Thermal resistances of R-22 and R-142b were also lower than others. Using R-142b as a working fluid, heat pipe type hydrogen storage tank is tested in absorption and desorption processes.

  • PDF

Study on Heat Transfer Characteristics by Heater Conditions of Hydrogen Sensor for Fuel Cell Electric Vehicle (연료전지 자동차용 수소센서의 히터 조건에 따른 열전달 특성에 관한 연구)

  • Suh, Hocheol;Park, Kyoungsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제21권1호
    • /
    • pp.23-29
    • /
    • 2013
  • In recent years, development of energy conversion systems using hydrogen as an energy source has been accelerated globally. Even though hydrogen is an environment-friendly energy source, safety and effectiveness issues in storage, transportation, and usage of hydrogen should be clearly resolved in every application. Therefore, sensors for detecting hydrogen leakage, especially for fuel cell electric vehicles, should be designed to have much higher resolution and accuracy in comparison with conventional gas sensors. In this study, we conducted to determine the design parameters for the semiconductor hydrogen sensor with optimized sensing conditions under the thermal distribution characteristic and thermal transfer characteristic. The heat generation study on power supply voltage was studied for correlation analysis of thermal energy according to the power supply voltage variation from 1.0 voltage to 10.0 voltage every 0.5 voltage. And we studied for the temperature coefficient of resistance with hydrogen sensor.

Investigation of Photocatalytic Activity with a Metal Doped TiO2 Nanotubular Electrode for Hydrogen Production (금속담지 된 수소제조용 TiO2 나노튜브 전극의 광활성 연구)

  • Lee, Jae-Min;Lee, Chang-Ha;Yoon, Jae-Kyung;Joo, Hyun-Ku
    • Transactions of the Korean hydrogen and new energy society
    • /
    • 제22권5호
    • /
    • pp.656-662
    • /
    • 2011
  • The purpose of this study was to correlate between photoelectrochemcial hydrogen production rate and electron transfer with various types of metal doped $TiO_2$ nanotubes as photoanodes. In order to fabricate light sensitized photoanode, CdS, $WO_3$, and Pt were doped by electrodeposition method. As the results of experiments, the electron transfer was favorable from higher position to lower position of conduction band (CB). In consequence, the higher hydrogen production rate was as follows, CdS/$TiO_2$ (100 $umol/hr-cm^2$) > $WO_3/TiO_2$ (20 $umol/hr-cm^2$) > Pt/$TiO_2$ (10 $umol/hr-cm^2$). The surface characterizations exhibited that crystal structure, morphological and electrical properties of various metal depoed $TiO_2$ nanotubes by the results of SEM, TEM, XPS, and photocurrent measurements.

A Theoretical Study on the Hydrogen Temperature Evolution Inside the Tank under Fast Filling Process (급속 충전에서 탱크 내부의 수소 온도 변화에 관한 이론 연구)

  • JI-CHAO LI;JI-QIANG LI;HENG XU;BYUNG CHUL CHOI;JEONG-TAE KWON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • 제34권6호
    • /
    • pp.608-614
    • /
    • 2023
  • The fast filling process of high-pressure hydrogen has an important impact on the filling efficiency and safety. In this paper, a specific study is carried out on the thermophysical phenomena during the fast filling process. Starting from the gas state equation of hydrogen, the change law of the hydrogen storage temperature is obtained, and then the temperature rise prediction is constructed. The model can clarify the relationship between the filling parameters and the temperature rise during the fast filling process, thereby revealing the flow and heat transfer laws of the fast charging process. To improve the theoretical research basis for the evaluation of vehicle-mounted hydrogen fast charging capacity, temperature prediction and optimization of hydrogenation methods.

Electrochemical Impedance Characteristics of a Low-Temperature Single Cell for CO2/H2O Co-Reduction to Produce Syngas (CO+H2)

  • Min Gwan, Ha;Donghoon, Shin;Jeawoo, Jung;Emilio, Audasso;Juhun, Song;Yong-Tae, Kim;Hee-Young, Park;Hyun S., Park;Youngseung, Na;Jong Hyun, Jang
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권4호
    • /
    • pp.462-471
    • /
    • 2022
  • In this study, the electrochemical impedance characteristics of CO2/H2O co-reduction to produce CO/H2 syngas were investigated in a low-temperature single cell. The effect of the operating conditions on the single-cell performance was evaluated at different feed concentrations and cell voltages, and the corresponding electrochemical impedance spectroscopy (EIS) data were collected and analyzed. The Nyquist plots exhibited two semicircles with separated characteristic frequencies of approximately 1 kHz and tens of Hz. The high-frequency semicircles, which depend only on the catholyte concentration, could be correlated to the charge transfer processes in competitive CO2 reduction and hydrogen evolution reactions at the cathodes. The EIS characteristics of the CO2/H2O co-reduction single cell could be explained by the equivalent circuit suggested in this study. In this circuit, the cathodic mass transfer and anodic charge transfer processes are collectively represented by a parallel combination of resistance and a constant phase element to show low-frequency semicircles. Through nonlinear fitting using the equivalent circuit, the parameters for each electrochemical element, such as polarization resistances for high- and low-frequency processes, could be quantified as functions of feed concentration and cell voltage.

Numerical Simulation of CNTs Based Solid State Hydrogen Storage System (탄소나노튜브 기반의 고체수소저장시스템에 관한 전산해석)

  • Kim, Sang-Gon;HwangBo, Chi-Hyung;Yu, Chul Hee;Nahm, Kee-Suk;Im, Yeon-Ho
    • Korean Chemical Engineering Research
    • /
    • 제49권5호
    • /
    • pp.644-651
    • /
    • 2011
  • Storing hydrogen in solid state hydride is one of the best promising methods for the future hydrogen economy. The total performance of such systems depends on the rate at which the amount of mass and heat migration is supplied to solid hydride. Therefore, an accurate modeling of the heat and mass transfer is of prime importance in optimizing the design of such systems. In this work, Hydrogen storage in Pt-CNTs hydrogen reactor has been intensively investigated by solving 2 dimensional mathematical models. Using a CFD computer software, systematic studies have been performed to elucidate the effect of heat and mass transfer during hydrogen charging periods. It was revealed that the optimized design of hydrogen storage vessel can prevent the increase of system temperature and the charging time due to the convective cooling effects inside the vessels at even high charging pressure. Because none has reported the critical issues of heat and mass transfer for CNT based hydrogen storage system, this work can support the first insight of the optimal design for solid state hydrogen storage system based on CNT in the near future.

STARS: A 3D GRID-BASED MONTE CARLO CODE FOR RADIATIVE TRANSFER THROUGH RAMAN AND RAYLEIGH SCATTERING WITH ATOMIC HYDROGEN

  • Chang, Seok-Jun;Lee, Hee-Won
    • Journal of The Korean Astronomical Society
    • /
    • 제53권6호
    • /
    • pp.169-179
    • /
    • 2020
  • Emission features formed through Raman scattering with atomic hydrogen provide unique and crucial information to probe the distribution and kinematics of a thick neutral region illuminated by a strong far-ultraviolet radiation source. We introduce a new 3-dimensional Monte-Carlo code in order to describe the radiative transfer of line photons that are subject to Raman and Rayleigh scattering with atomic hydrogen. In our Sejong Radiative Transfer through Raman and Rayleigh Scattering (STaRS) code, the position, direction, wavelength, and polarization of each photon is traced until escape. The thick neutral scattering region is divided into multiple cells with each cell being characterized by its velocity and density, which ensures flexibility of the code in analyzing Raman-scattered features formed in a neutral region with complicated kinematics and density distribution. To test the code, we revisit the formation of Balmer wings through Raman scattering of the far-UV continuum near Lyβ and Lyγ in a static neutral region. An additional check is made to investigate Raman scattering of O vi in an expanding neutral medium. We find a good agreement of our results with previous works, demonstrating the capability of dealing with radiative transfer modeling that can be applied to spectropolarimetric imaging observations of various objects including symbiotic stars, young planetary nebulae, and active galactic nuclei.

Effects of CO2 on Heat Transfer from Oxygen-Enriched Hydrogen Flame (이산화탄소가 수소 산소부화 화염의 열전달에 미치는 영향)

  • Lee, Chang-Yeop;Choi, Joon-Won;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제28권8호
    • /
    • pp.937-944
    • /
    • 2004
  • An experimental study has been conducted to evaluate the effects of $CO_2$ on heat transfer from oxygen-enriched hydrogen flame. Experiments were performed on flames stabilized by a co-flow swirl burner, which was mounted on top of the furnace. Five different oxidizer compositions were prepared by replacing $N_2$ with $CO_2$. In a steady state, the total as well as radiative heat flux from the flame to the wall of furnace have been measured using a heat flux meter. Temperature distribution in furnace also has been measured and compared. By increasing $CO_2$ proportion in the oxidizer, the convection played a more significant role rather than radiation. Overall temperature in the furnace was seen to be decreased, while the total heat flux has increased.

Excited State Dynamics of Curcumin and Solvent Hydrogen Bonding

  • Yang, Il-Seung;Jin, Seung-Min;Kang, Jun-Hee;Ramanathan, Venkatnarayan;Kim, Hyung-Min;Suh, Yung-Doug;Kim, Seong-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권spc8호
    • /
    • pp.3090-3093
    • /
    • 2011
  • Curcumin is a natural product with antioxidant, anti-inflammatory, antiviral and antifungal functions. As it is known that the excited state intramolecular hydrogen transfer of curcumin are related to its medicinal antioxidant mechanism, we investigated its excited state dynamics by using femtosecond transient absorption spectroscopy in an effort to understand the molecule's therapeutic effect in terms of its photophysics and photochemistry. We found that stronger intermolecular hydrogen bonding with solvents weakens the intramolecular hydrogen bonding and decelerates the dynamical process of the enolic hydrogen. Exceptions are found in methanol and ethylene glycol due to their nature as simultaneous hydrogen bonding donor-acceptor and high viscosity solvent, respectively.

Hydrogen Evolution from Biological Protein Photosystem I and Semiconductor BiVO4 Driven by Z-Schematic Electron Transfer

  • Shin, Seonae;Kim, Younghye;Nam, Ki Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.251.2-251.2
    • /
    • 2013
  • Natural photosynthesis utilizes two proteins, photosystem I and photosystem II, to efficiently oxidize water and reduce NADP+ to NADPH. Artificial photosynthesis which mimics this process achieve water splitting through a two-step Z-schematic water splitting process using man-made synthetic materials for hydrogen fuel production. In this study, Z-scheme system was achieved from the hybrid materials which composed of hydrogen production part as photosystem I protein and water oxidizing part as semiconductor BiVO4. Utilizing photosystem I as the hydrogen evolving part overcomes the problems of existing hydrogen evolving p-type semiconductors such as water instability, expensive cost, few available choices and poor red light (>600 nm) absorbance. Some problems of photosystem II, oxygen evolving part of natural photosynthesis, such as demanding isolation process and D1 photo-damage can also be solved by utilizing BiVO4 as the oxygen evolving part. Preceding research has not suggested any protein-inorganic-hybrid Z-scheme composed of both materials from natural photosynthesis and artificial photosynthesis. In this study, to realize this Z-schematic electron transfer, diffusion step of electron carrier, which usually degrades natural photosynthesis efficiency, was eliminated. Instead, BiVO4 and Pt-photosystem I were all linked together by the mediator gold. Synthesized all-solid-state hybrid materials show enhanced hydrogen evolution ability directly from water when illuminated with visible light.

  • PDF