• Title/Summary/Keyword: Hydrogen storage and production

Search Result 118, Processing Time 0.025 seconds

Modeling of SPE cell for hydrogen production using EMTDC (EMTDC를 이용한 수소제조용 SPE 셀의 모델링)

  • Kim Se-Heon;Park Min-won;Yu In-Keun
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1495-1497
    • /
    • 2004
  • This paper presents an effective modeling scheme of SPE cell system for hydrogen production. As oxygen and hydrogen produced by water electrolysis using SPE are high purity, we can use oxygen in biomedical and hydrogen could be used in many ways. Recently, it is under the eye as a surplus power storage system. PSCAD/EMTDC model of SPE cell system for hydrogen production to efficiently utilize Solar cell energy which produces effectively hydrogen energy is showed in this paper. The simulated results are then verified by comparing them with the actual values obtained from the data acquisition system. Authors are sure that it is a useful method to the researchers who study SPE cell system for hydrogen production.

  • PDF

EMDTC model Development of Solar-Powered Hydrogen Production system (PV-SPE 시스템 최적 운전 기법에 관한 연구)

  • Lee, Dong-Han;Kim, Jong-Hyun;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.274-276
    • /
    • 2005
  • This paper present an effective modeling scheme of SPE cell system for hydrogen production. As oxygen and hydrogen produced by water electrolysis using SPE are high purity, we can use oxygen in biomedical and hydrogen could be used in many ways. Recently, it is under the eye as a surplus power storage system. PSCAD/EMTDC model of SPE cell system for hydrogen production to efficiently utilize solar cell energy is showed in this paper. The simulated results are then verified by comparing them with the actual values obtained from the data acquisition system. Authors are sure that it is a useful method to the researchers who study SPE cell system for hydrogen production.

  • PDF

A Study on the Steam Reforming Reaction of DME on Cu/ZnO/Al2O3 Catalyst for Hydrogen Production (수소 생산을 위한 Cu/ZnO/Al2O3 촉매상에서 DME의 수증기 개질 반응 연구)

  • HYUNSEUNG BYUN;YUNJI KU;JUHEE OH;JAESUNG BAN;YOUNGJIN RAH;JESEOL LEE;WONJUN CHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.581-586
    • /
    • 2023
  • As the development of alternative energy is required due to the depletion of fossil fuels, interest in the use of hydrogen energy is increasing. Hydrogen is a promising clean energy source with high energy density and can lead to the application of environmentally friendly technologies. However, due to difficulties in production, storage, and transportation that prevent the application of hydrogen-based eco-friendly technology, research on reforming reactions using dimethyl ether (DME) is being conducted. Unlike other hydrocarbons, DME is attracting attention as a hydrogen carrier because it has excellent storage stability and transportability, and there is no C-C bond in the molecule. The reaction between DME and steam is one of the reforming processes with the highest hydrogen yield in theory at a temperature lower than that of other hydrocarbons. In this study, a hydrogen reforming device using DME was developed and a catalyst prepared by supporting Cu in alumina was put into a reactor to find optimal hydrogen production conditions for supplying hydrogen to fuel cells while changing reaction temperature (300-500℃), pressure (5-10 bar), and steam/carbon ratio (3:1 to 5:1).

Numerical Analysis of Discharge Flow in Type III Hydrogen Tank with Different Gas Models (Type III 수소 저장 용기에서 가스 모델(gas model)에 따른 배출(discharge) 현상의 수치 해석적 연구)

  • KIM, MOO-SUN;RYU, JOON-HYOUNG;JUNG, SU YEON;LEE, SEONG WOO;CHOI, SUNG WOONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.6
    • /
    • pp.558-563
    • /
    • 2020
  • Hydrogen is attracting attention as an alternative energy source as an eco-friendly fuel without emitting environmental pollutants. In order to use hydrogen as an energy source, technologies such as hydrogen production and storage must be used, and new storage methods are being studied. In this study, the behavior of hydrogen in the storage tank were numerically studied under high-pressure hydrogen discharge conditions in a Type III hydrogen tank. Numerical results were compared with the experimental value and the results were quantitatively analyzed to verify the numerical implementation. With the results of pressure and temperature values under a given discharge condition, the Redich-Kwong gas model showed the adequate models with the smallest error between numerical and experimental results.

The Evaluation of Reliability for the High pressure hydrogen Storage System of Fuel Cell Vehicle(II) (연료전지자동차의 고압수소저장시스템 신뢰성 평가(II))

  • Choi, Young-Min;Kim, Sang-Hyun;Kim, Hyung-Ki;Jang, Gyu-Jin;Ahn, Byung-Ki;Lim, Tae-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.37-40
    • /
    • 2008
  • We have concentrated on the performance improvement of each part for durability, safety and cost of high pressure storage system for fuel cell vehicle so far. But for the mass production of fuel cell vehicle, it is necessary to evaluate durability and safety in system module. We built the standard to evaluate and collision safety of high pressure storage system for fuel cell vehicle, and could verify reliability of high pressure storage system.

  • PDF

A Study of Application on the Pulsating Heat Pipe for Heat Transfer Enhancement of Metal Hydride Alloy (수소 저장합금층의 열전달 촉진을 위한 진동형 히트 파이프 적용에 관한 연구)

  • Lee, Min-Jae;Im, Yong-Bin;Bae, Sang-Chul;Kim, Jong-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.346-351
    • /
    • 2006
  • When metallic alloys are reacted to hydrogen, heat transfer of storage tank effects hydrogen storage rate and capacity. If pulsating heat pipe are used to improve heat transfer efficiency, production of hydrogen storage tank can be more simple and economical. Experiment of heat pipe was conducted by varying working fluids and heat flux. According to supply heat flux, test indicate that R-22 and R-l42b were found lower temperature difference between evaporator and condenser than R-134a and Ethanol. Thermal resistances of R-22 and R-142b were also lower than others. Using R-142b as a working fluid, heat pipe type hydrogen storage tank is tested in absorption and desorption processes.

  • PDF

Prioritizing the locations for hydrogen production using a hybrid wind-solar system: A case study

  • Mostafaeipour, Ali;Jooyandeh, Erfan
    • Advances in Energy Research
    • /
    • v.5 no.2
    • /
    • pp.107-128
    • /
    • 2017
  • Energy is a major component of almost all economic, production, and service activities, and rapid population growth, urbanization and industrialization have led to ever growing demand for energy. Limited energy resources and increasingly evident environmental effects of fossil fuel consumption has led to a growing awareness about the importance of further use of renewable energy sources in the countries energy portfolio. Renewable hydrogen production is a convenient method for storage of unstable renewable energy sources such as wind and solar energy for use in other place or time. In this study, suitability of 25 cities located in Iran's western region for renewable hydrogen production are evaluated by multi-criteria decision making techniques including TOPSIS, VIKOR, ELECTRE, SAW, Fuzzy TOPSIS, and also hybrid ranking techniques. The choice of suitable location for the centralized renewable hydrogen production is associated with various technical, economic, social, geographic, and political criteria. This paper describes the criteria affecting the hydrogen production potential in the study region. Determined criteria are weighted with Shannon entropy method, and Angstrom model and wind power model are used to estimate respectively the solar and wind energy production potential in each city and each month. Assuming the use of proton exchange membrane electrolyzer for hydrogen production, the renewable hydrogen production potential of each city is then estimated based on the obtained wind and solar energy generation potentials. The rankings obtained with MCDMs show that Kermanshah is the best option for renewable hydrogen production, and evaluation of renewable hydrogen production capacities show that Gilangharb has the highest capacity among the studied cities.

The hydrogen storage capacity of metal-containing polyacrylonitrile-based electrospun carbon nanofibers

  • Bai, Byong-Chol;Kim, Jong-Gu;Naik, Mehraj-Ud-Din;Im, Ji-Sun;Lee, Young-Seak
    • Carbon letters
    • /
    • v.12 no.3
    • /
    • pp.171-176
    • /
    • 2011
  • Polyacrylonitrile-based carbon nanofibers (CNFs) containing Ti and Mn were prepared by electrospinning. The effect of metal content on the hydrogen storage capacity of the nanofibers was evaluated. The nanofibers containing Ti and Mn exhibited maximum hydrogen adsorption capacities of 1.6 and 1.1 wt%, respectively, at 303 K and 9 MPa. Toward the development of an improved hydrogen storage system, the optimum conditions for the production of metalized CNFs were investigated by characterizing the specific surface areas, pore volumes, sizes, and shapes of the fibers. According to the results of Brunauer-Emmett-Teller analysis, the activation of the CNFs using potassium hydroxide resulted in a large pore volume and specific surface area in the samples. This is attributable to the optimized pore structure of the metal-containing polyacrylonitrile-based electrospun CNFs, which may provide better sites for hydrogen adsorption than do current adsorbates.

Syngas and Hydrogen Production from $CeO_2/ZrO_2$ coated Foam Devices under Simulated Solar Radiation (다공성 폼에 코팅된 $CeO_2/ZrO_2$ 를 이용한 고온 태양열 합성가스 및 수소 생산 연구)

  • Jang, Jong-Tak;Yoon, Ki-June;Han, Gui-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.260-266
    • /
    • 2012
  • Syngas and hydrogen from the $CeO_2/ZrO_2$ coated foam devices were investigated under simulated solar radiation. The $CeO_2/ZrO_2$ coated SiC, Ni and Cu foam device were prepared using drop-coating method. Syngas production step was performed at $900^{\circ}C$, and hydrogen production process was performed for ten repeated cycles to compare the CeO2 conversion in syngas production step, $H_2$ yield in hydrogen production step and cycle reproducibility. The produced syngas had the $H_2$/CO ratio of 2, which was suitable for methanol synthesis or Fischer-Tropsch synthesis process. In addition, syngas and hydrogen production process is one of the promising chemical pathway for storage and transportation of solar heat by converting solar energy to chemical energy. After ten cycles of redox reaction, the $CeO_2/ZrO_2$ was analyzed using XRD pattern and SEM image in order to characterize the physical and chemical change of metal oxide at the high temperature.

  • PDF

Review and new trends of hydrogen gas sensor technologies (수소센서 기술의 고찰과 최근동향)

  • Han, Sang-Do
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.67-86
    • /
    • 2010
  • Hydrogen is emerging as clean fuel and important industrial raw materials. The hydrogen gas is not sensed by the human olfactory system, But the combustion characteristics of hydrogen is that the ignition is very easy, the propagation speed of the flame is very fast and explosion limits is a wide range of 4 %~75 %. Therefore it is extremely in danger, and the need for its leakage detection technologies is especially important in places such as a production, transportation, storage and usage. The hydrogen sensors are classified with ceramic type, semiconductor type, optical type, electrochemical type and so on. Hydrogen sensors and their technologies are reviewed in detail for materials, fabrication process, sensing characteristics, good point and faults, and production and utilization of sensors be discussed.