• 제목/요약/키워드: Hydrogen sorption

검색결과 55건 처리시간 0.02초

Bifunctional Fe-SBA-15-SO3H Mesoporous Catalysts with Different Si/Fe Molar Ratios: Synthesis, Characterization and Catalytic Activity

  • Erdem, Sezer;Erdem, Beyhan;Oksuzoglu, Ramis Mustafa;Citak, Alime
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권5호
    • /
    • pp.1481-1486
    • /
    • 2013
  • Bifunctional Fe-SBA-15-$SO_3H$ mesoporous materials with different Si/Fe molar ratios (3, 5, and 7) have been synthesized via a simple direct hydrothermal method and characterized by XRD, $N_2$-adsorption/desorption, TG/DTG and FT-IR techniques, and used as solid acid catalysts in the esterification of lactic acid with methanol. XRD and $N_2$ sorption characterizations show successful iron doping within the mesoporous channels of SBA-15-$SO_3H$. The FT-IR and TG/DTG characterizations also reveal the presence of iron. With the incorporation of Fe ions into the SBA-15-$SO_3H$, the acid sites substantially increased because of the self-separated acidity of the hydrolysis of $Fe^{3+}$ solutions. However, in the Si/Fe = 3 molar ratio, the catalytic conversion decreased which is caused by the reduced cooperation effect between the acid pairs due to the weakened hydrogen bonds and collapse of the pore structure. This further suggests that the mesoporous structure decreases with the decrease in Si/Fe ratio.

Pt-Sn/θ-Al2O3 촉매상에서 반응조건에 따른 n-부탄의 탈수소화 반응 (Effect of Reaction Conditions for n-Butane Dehydrogenation over Pt-Sn/θ-Al2O3 Catalyst)

  • 조경호;강성은;박정현;조준희;신채호
    • 청정기술
    • /
    • 제18권2호
    • /
    • pp.162-169
    • /
    • 2012
  • n-부탄의 탈수소화 촉매로 Pt와 Sn을 알루미나 지지체에 담지하기 위하여 함침법을 이용하여 Pt-Sn/${\theta}-Al_2O_3$ 촉매를 제조하였다. 물리적화학적 특성을 알아보기 위해 XRD, $N_2$ 흡탈착, $NH_3$-TPD, $H_2$-TPR 분석을 실시하였다. 또한 Pt-Sn/${\theta}-Al_2O_3$ 촉매상에서 탈수소반응에 대한 활성에 대한 영향을 관찰하기 위해서 전처리 온도, 전처리 시간, 반응온도, 공간속도에 따른 촉매의 활성에 대한 영향과 더불어 탈수소 반응에 대한 온도 조건에 따른 반응속도의 변화를 관찰하였다. 5~55% 부탄의 전환율 변화에 따른 부텐의 선택도 합은 95% 정도로 일정하게 유지되었다. 아레니우스식을 이용하여 얻은 활성화 에너지 $82.4kJ\;mol^{-1}$이었고, 멱함수를 이용하여 얻은 n-부탄 및 수소의 반응차수는 각각 0.70과 -0.20차로 나타났다.

실리콘 표면에 증착된 다공성 알루미나의 수분 흡착 거동 (Moisture Gettering by Porous Alumina Films on Textured Silicon Wafer)

  • 임효령;엄누시아;조정호;좌용호
    • Korean Chemical Engineering Research
    • /
    • 제53권3호
    • /
    • pp.401-406
    • /
    • 2015
  • 게터는 반도체와 초소형 전자패키지 소자 내부의 수소와 수증기 같은 기체를 흡착하여 기기 작동 시 방해 기체를 제거하는 기능을 한다. 본 연구에서는 재료와 공정 측면에서 높은 가격 경쟁력을 갖는 게터로, 실리콘 기판에 올라간 다공성 알루미나 구조체를 제조하는 연구를 진행하였다. 기공의 크기가 조절된 양극산화 알루미나(AAO)는 높은 비표면적을 가지며 표면에 OH-기를 다수 포함하므로 높은 효율을 갖는 수분 흡착제로 사용되었다. 등온 수분 흡탈착 곡선으로 분석한 수분 흡착도는 상대습도 35%일 때 2.02%로 우수한 성능을 나타내었다. 즉, 저온에서 사용가능하며, 추가 열원이 필요하지 않아 박막구조의 소형화가 용이하여 내부 손상 및 오염을 방지할 수 있는 게터재를 합성하였다.

유청단백질로 만들어진 식품포장재에 관한 연구

  • 김성주
    • 한국유가공학회:학술대회논문집
    • /
    • 한국유가공기술과학회 2002년도 제54회 춘계심포지움 - 우유와 국민건강
    • /
    • pp.59-60
    • /
    • 2002
  • Edible films such as wax coatings, sugar and chocolate covers, and sausage casings, have been used in food applications for years$^{(1)}$ However, interest in edible films and biodegradable polymers has been renewed due to concerns about the environment, a need to reduce the quantity of disposable packaging, and demand by the consumer for higher quality food products. Edible films can function as secondary packaging materials to enhance food quality and reduce the amount of traditional packaging needed. For example, edible films can serve to enhance food quality by acting as moisture and gas barriers, thus, providing protection to a food product after the primary packaging is opened. Edible films are not meant to replace synthetic packaging materials; instead, they provide the potential as food packagings where traditional synthetic or biodegradable plastics cannot function. For instance, edible films can be used as convenient soluble pouches containing single-servings for products such as instant noodles and soup/seasoning combination. In the food industry, they can be used as ingredient delivery systems for delivering pre-measured ingredients during processing. Edible films also can provide the food processors with a variety of new opportunities for product development and processing. Depends on materials of edible films, they also can be sources of nutritional supplements. Especially, whey proteins have excellent amino acid balance while some edible films resources lack adequate amount of certain amino acids, for example, soy protein is low in methionine and wheat flour is low in lysine$^{(2)}$. Whey proteins have a surplus of the essential amino acid lysine, threonine, methionine and isoleucine. Thus, the idea of using whey protein-based films to individually pack cereal products, which often deficient in these amino acids, become very attractive$^{(3)}$. Whey is a by-product of cheese manufacturing and much of annual production is not utilized$^{(4)}$. Development of edible films from whey protein is one of the ways to recover whey from dairy industry waste. Whey proteins as raw materials of film production can be obtained at inexpensive cost. I hypothesize that it is possible to make whey protein-based edible films with improved moisture barrier properties without significantly altering other properties by producing whey protein/lipid emulsion films and these films will be suitable far food applications. The fellowing are the specific otjectives of this research: 1. Develop whey protein/lipid emulsion edible films and determine their microstructures, barrier (moisture and oxygen) and mechanical (tensile strength and elongation) properties. 2. Study the nature of interactions involved in the formation and stability of the films. 3. Investigate thermal properties, heat sealability, and sealing properties of the films. 4. Demonstrate suitability of their application in foods as packaging materials. Methodologies were developed to produce edible films from whey protein isolate (WPI) and concentrate (WPC), and film-forming procedure was optimized. Lipids, butter fat (BF) and candelilla wax (CW), were added into film-forming solutions to produce whey protein/lipid emulsion edible films. Significant reduction in water vapor and oxygen permeabilities of the films could be achieved upon addition of BF and CW. Mechanical properties were also influenced by the lipid type. Microstructures of the films accounted for the differences in their barrier and mechanical properties. Studies with bond-dissociating agents indicated that disulfide and hydrogen bonds, cooperatively, were the primary forces involved in the formation and stability of whey protein/lipid emulsion films. Contribution of hydrophobic interactions was secondary. Thermal properties of the films were studied using differential scanning calorimetry, and the results were used to optimize heat-sealing conditions for the films. Electron spectroscopy for chemical analysis (ESCA) was used to study the nature of the interfacial interaction of sealed films. All films were heat sealable and showed good seal strengths while the plasticizer type influenced optimum heat-sealing temperatures of the films, 130$^{\circ}$C for sorbitol-plasticized WPI films and 110$^{\circ}$C for glycerol-plasticized WPI films. ESCA spectra showed that the main interactions responsible for the heat-sealed joint of whey protein-based edible films were hydrogen bonds and covalent bonds involving C-0-H and N-C components. Finally, solubility in water, moisture contents, moisture sorption isotherms and sensory attributes (using a trained sensory panel) of the films were determined. Solubility was influenced primarily by the plasticizer in the films, and the higher the plasticizer content, the greater was the solubility of the films in water. Moisture contents of the films showed a strong relationship with moisture sorption isotherm properties of the films. Lower moisture content of the films resulted in lower equilibrium moisture contents at all aw levels. Sensory evaluation of the films revealed that no distinctive odor existed in WPI films. All films tested showed slight sweetness and adhesiveness. Films with lipids were scored as being opaque while films without lipids were scored to be clear. Whey protein/lipid emulsion edible films may be suitable for packaging of powder mix and should be suitable for packaging of non-hygroscopic foods$^{(5,6,7,8,)}$.

  • PDF

Pd 촉매상에서 일산화탄소 존재 하 수소의 선택적 산화반응: 담체 효과 (Selective Oxidation of Hydrogen Over Palladium Catalysts in the Presence of Carbon Monoxide: Effect of Supports)

  • 김은정;강동창;신채호
    • Korean Chemical Engineering Research
    • /
    • 제55권1호
    • /
    • pp.121-129
    • /
    • 2017
  • $TiO_2$, $Al_2O_3$, $ZrO_2$, $SiO_2$와 같은 다양한 담체에 습식함침법을 이용하여 Pd 기반 촉매를 제조하여 일산화탄소 존재하에 수소의 선택적 산화반응에 적용하였다. 제조된 촉매는 물리화학적 특성을 알아보기 위하여 XRD, $N_2$ 흡착, CO-, (CO+$H_2O$)-TPD, CO-TPR, XPS등의 특성분석을 수행하였다. CO-TPD와 (CO+$H_2O$)-TPD를 통해 $CO_2$ 탈착에 대한 $H_2O$의 영향을 알아보았으며 이러한 TPD 결과는 $H_2/CO$ 전환율과 상관관계가 있음을 확인하였다. 사용된 촉매 중에서 $Pd/ZrO_2$$H_2$ 전환율 측면에서 가장 활성이 좋은 것으로 나타났다. $H_2O$가 첨가된 선택적 $H_2$ 산화반응에서는 $H_2O$, CO, $H_2$가 경쟁흡착을 하였으며, 첨가된 $H_2O$가 CO 및 $H_2$의 반응을 촉진시켰다.