• Title/Summary/Keyword: Hydrogen separation membrane

Search Result 150, Processing Time 0.027 seconds

Hydrogen Permeation Performance of Ni48Nb32Zr20 Alloy Membrane Coated with Pd by Sputtering (스퍼터링으로 Pd가 코팅된 Ni48Nb32Zr20 합금분리막의 수소 투과 성능)

  • Min Chang Shin;Jung Hoon Park
    • Membrane Journal
    • /
    • v.34 no.2
    • /
    • pp.140-145
    • /
    • 2024
  • In modern times, when a change in the energy paradigm is required, hydrogen is an attractive energy source. Among these hydrogen purification technologies, technology using a membrane is attracted attention as a technology that can purify high purity hydrogen at low cost. However, palladium(Pd), which is mostly used because of its excellent hydrogen separation performance, is very expensive, so a replacement material is needed. In this study, a alloy membrane was manufactured from an alloy of niobium (Nb), which has high hydrogen permeability but is weak to hydrogen embrittlement, and nickel (Ni) and zirconium (Zr), which have low hydrogen permeability but are highly durable. Hydrogen permeation characteristics were confirmed under conditions of 350~450 ℃ at 1 to 4 bar. The maximum hydrogen permeation flux was 0.69 ml/cm2/min for the Ni48Nb32Zr20 alloy membrane without Pd coating, and 13.05 ml/cm2/min for the Pd coated alloy membrane.

Fabrications and Evaluations of Hydrogen Permeation on TIN-M(Co, NI) Composite Membrane (TIN-M(M=Co, NI) 복합 분리막의 제조 및 수소투과 특성평가)

  • Kim, Kyeong-Il;Yoo, Sung-Woong;Hong, Tae-Whan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.4
    • /
    • pp.264-270
    • /
    • 2010
  • Recently, the most promising methods for high purity hydrogen production are membranes separation such as polymer, metal, ceramic and composites. It is well known that Pd and Pd-alloys membranes have excellent properties for hydrogen separation. However, it has hydrogen embrittlement and high cost for practical applications. Therefore, most scientists have studied new materials instead of Pd and Pd-alloys. On the other hand, TiN powders are great in resistance to acids and chemically stable under high operating temperature. In order to get specimens for hydrogen permeation, the TiN powders synthesized were consolidated together with Co, Ni powders by hot press sintering (HPS). During the consolidation of powders at HPS, heating rate was 10 K/min and the pressure was 10 MPa. It was characterized by XRD, SEM. Also, we estimated the hydrogen permeability by Sievert's type hydrogen permeation membrane equipment.

Fabrication and Hydrogen Separation Performance of Newly Created Ti-Based Alloy Membrane (신조성의 Ti-기반 합금 수소분리막의 설계 및 수소투과 성능)

  • Min Yeong Ko;Min Chang Shin;Xuelong Zhuang;Jae Yeon Hwang;Sung Woo Han;Si Eun Kim;Jung Hoon Park
    • Membrane Journal
    • /
    • v.34 no.2
    • /
    • pp.146-153
    • /
    • 2024
  • In this experiment, a Ti-based flat hydrogen separation membrane was designed and manufactured. In order to find a Ti-based hydrogen separation membrane of a new composition, the correlation between the physical-chemical properties and hydrogen permeability of various alloys was investigated. Based on this, two types of new alloy films (Ti14.2Zr66.4Ni12.6Cu6.8 (70 ㎛), Ti17.3Zr62.7Ni20 (80 ㎛)) was designed and manufactured. The manufactured flat hydrogen separation membrane was tested for hydrogen permeation using mixed gas (H2, N2) and sweep gas (Ar) at 300~500℃ and 1~4 bar. The Ti14.2Zr66.4Ni12.6Cu6.8 alloy film has a maximum flux of 16.35 mL/cm2 min at 500℃ and 4 bar, and the Ti17.3Zr62.7Ni20 alloy film has a maximum flux of 10.28 mL/cm2 min at 450℃ and 4 bar.

Synthesis of Silica Membranes on a Porous Stainless Steel by Sol-Gel Method and Effect of Preparation Conditions on Their Permselectivity

  • Lee, Dong-Wook;Nam, Seung-Eun;Sea, Bong-Kuk;Ihm, Son-Ki;Lee, Kew-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.9
    • /
    • pp.1371-1378
    • /
    • 2004
  • A porous stainless steel (SUS) as a substrate of silica composite membranes for hydrogen purification was used to improve mechanical strength of the membranes for industrial application. The SUS support was successfully modified by using submicron Ni powder, $SiO_2$ sols with particle size of 500 nm and 150 nm in turns. Silica top layer was coated on the modified supports under various preparation conditions such as calcination temperature, dipping time and repeating number of dipping-drying process. The calcination temperature for proper sintering was between H ttig temperature and Tamman temperature of the coating materials. Maximum hydrogen selectivity was investigated by changing dipping time. As repeating number of dipping-drying process increased, permeances of nitrogen and hydrogen were decreased and $H_2/N_2$ selectivity was increased due to the reduction of non-selective pinholes and mesopores. For the silica membrane prepared under optimized conditions, permeance of hydrogen was about $3\;{\times}\;10^{-5}\;cm^3{\cdot}cm^{-2}{\cdot}s^{-1}{\cdot}cmHg^{-1}$ combined with $H_2/N_2$ seletivity of about 20.

Separation of Hydrogen-Nitrogen Gas Mixture by PTMSP/PDMS-PEI Composite Membrane

  • Lee, Hyun-Kyung;Kang, Tae-Beom
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.148-151
    • /
    • 2004
  • The development of the gas separation processes using polymeric membranes has attracted a great deal of interest during the last two decades. Membrane in this application has to offer an excellent thermal stability, chemical/solvent resistance, and mechanical strength under operating conditions.(omitted)

  • PDF

The thermal stabilization characteristics of electrolyte membrane in high temperature electrolysis[HTE] (고온 수전해 전해질 막의 열안정화 특성 고찰)

  • Choi, Ho-Sang;Son, Hyo-Seok;Sim, Kyu-Sung;Hwang, Gab-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.2
    • /
    • pp.150-158
    • /
    • 2005
  • Added ratio of 8YSZ powder and organic compounds (solvent, plasticizer, dispersant, binder) properly. It manufactured electrolysis membrane by wet process that make slurry and dry process that do not use organic compounds. In the case of wet process, harmony combination and method of organic compound are an importance element in slurry manufacture. This slurry did calcine at temperature of 140$^{\circ}C$ in Furnace and manufactured electrolyte disk by Dry pressing method. Like this, manufacturing disk sintered at temperature of $1300^{\circ}C,\;1400^{\circ},\;1500^{\circ}C$ in Furnace and completed electrolysis membrane. Confirmed change of crystal structure and decision form through analysis of density, SEM, XRD according to change of sintering temperature, and considered relation with ion conductivity.

Preparation and Gas Permeation Characteristics of Polyetherimide Hollow Fiber Membrane for the Application of Hydrogen Separation (수소분리를 위한 Polyetherimide계 고분자 중공사막의 제조 및 기체투과 특성)

  • Kwon, Hyeon Woong;Im, Kwang Seop;Kim, Ji Hyeon;Kim, Seong Heon;Kim, Do Hyeong;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.456-470
    • /
    • 2021
  • In this study, polyetherimide-based hollow fiber membranes were manufactured using the NIPS (nonsolvent induced phase separation) method. THF, Ethanol, and LiNO3 were used as additives to control the morphology of the PEI-hollow fiber membranes. Furthermore, for the development of a high hydrogen separation membrane, the spinning conditions were optimized through the characterization of SEM and gas permeance. As a result, as the content of THF increased, the hydrogen/carbon dioxide selectivity increased. However, the permeance decreased due to the trade-off relationship. When ethanol was added, a finger-like structure was shown, and when LiNO3 was added, a sponge structure was shown. In particular, in the case of a hollow fiber membrane with an optimized PDMS coating layer, the permeance was 40 GPU and the hydrogen/carbon dioxide selectivity was 5.6.

Hydrogen Separation from Binary and Quaternary Gas Mixtures Using Organic Templating Silica Membrane (유기템플레이팅 실리카막을 이용한 이성분 및 사성분 수소 분리)

  • Moon, Jong-Ho;Bae, Ji-Han;Chung, Jong-Tae;Lee, Jae-Wook;Lee, Chang-Ha
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.9-12
    • /
    • 2007
  • The transport mechanisms of the MTES (methyltriethoxysilane) templating silica/a-alumina composite membrane were evaluated by using four binary and one quaternary hydrogen mixtures through permeation experiments at unsteady- and steady-states. Since the permeation flux in the MTES membrane, through the experimental and theoretical studies, was affected by molecular sieving effects as well as surface diffusion properties, the kinetic and equilibrium separation should be considered simultaneously according to molecular properties. In order to depict the transient multi-component permeation on the templating silica membrane, the GMS (generalized Maxwell-Stefan) and DGM (dust gas model) were adapted to unsteady-state material balance.

  • PDF

Theoretical Study for Hydrogen Production from an Integrated Gasification Combined Cycle System

  • Lee, Sang-Sup
    • Environmental Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.35-39
    • /
    • 2011
  • An integrated gasification combined cycle (IGCC) system has been attracting attention due to its increased energy conversion efficiency and ability to treat various carbonaceous materials. IGCC is also expected to play an important role in the future supply of hydrogen energy. The use of a palladium-based membrane to separate the hydrogen from the synthesis gas stream has been intensively studied due to its exceptional hydrogen-separating capability. However, theoretical research on hydrogen separation is still an unfamiliar area in Korea. First-principle density functional theory was applied in this study to investigate the dissociative adsorption of hydrogen onto a palladium surface. The stability of hydrogen on the surface was theoretically evaluated with various adsorption configurations, partial pressures and temperatures. Further theoretical and experimental studies were also suggested to find a more hydrogen-selective material.