Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.6.456

Preparation and Gas Permeation Characteristics of Polyetherimide Hollow Fiber Membrane for the Application of Hydrogen Separation  

Kwon, Hyeon Woong (Department of Polymer Science & Engineering, School of Materials Science & Engineering, Gyeongsang National University)
Im, Kwang Seop (Department of materials Engineering and Convergence Technology, Gyeongsang National University)
Kim, Ji Hyeon (Department of materials Engineering and Convergence Technology, Gyeongsang National University)
Kim, Seong Heon (Department of materials Engineering and Convergence Technology, Gyeongsang National University)
Kim, Do Hyeong (Research Institute for Green Energy Convergence Technology, Gyeongsang National University)
Nam, Sang Yong (Department of Polymer Science & Engineering, School of Materials Science & Engineering, Gyeongsang National University)
Publication Information
Membrane Journal / v.31, no.6, 2021 , pp. 456-470 More about this Journal
Abstract
In this study, polyetherimide-based hollow fiber membranes were manufactured using the NIPS (nonsolvent induced phase separation) method. THF, Ethanol, and LiNO3 were used as additives to control the morphology of the PEI-hollow fiber membranes. Furthermore, for the development of a high hydrogen separation membrane, the spinning conditions were optimized through the characterization of SEM and gas permeance. As a result, as the content of THF increased, the hydrogen/carbon dioxide selectivity increased. However, the permeance decreased due to the trade-off relationship. When ethanol was added, a finger-like structure was shown, and when LiNO3 was added, a sponge structure was shown. In particular, in the case of a hollow fiber membrane with an optimized PDMS coating layer, the permeance was 40 GPU and the hydrogen/carbon dioxide selectivity was 5.6.
Keywords
polyetherimide; hollow fiber membrane; gas separation; permeance; selectivity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J. H. Bae, H. G. Seo, E. Y. Ahn, and J. W. Lee, "Patent Trend Analysis of Carbon Capture/Storage/Utilzation Technology", Econ. Environ. Geol., 50, 5, 389-400 (2017).   DOI
2 S. K. Ryi, J. Y. Han, C. H. Kim, H. Lim, and H. Y. Jung, "Technical Trends of Hydrogen Production", Clean Tech., 23, 2, 121-132 (2017).   DOI
3 H. K. Song, J. W. Choi, H. Lee, S. S. Kim, and B. K. Na, "Preparation of Synthesis Gas from Methane in a Capacitive rf Discharge", Clean Tech., 12, 3, 138-144 (2006).
4 A. Midilli, M. Ay, I. Dincer, and M. A. Rosen, "On hydrogen and hydrogen energy strategies I: Current status and needs", Renew. Sust. Energ. Rev., 9, 3, 255-271 (2005).   DOI
5 J. M. Lee, J. H. Park, D. J. Kim, M. G. Lee, and S. Y. Nam, "Characterization and Preparation of Polyimide Copolymer Membranes by Non-Solvent Induced Phase Separation Method", Membr. J., 25, 4, 343-151 (2015).   DOI
6 S. Husain, "Mixed matrix dual layer hollow fiber membranes for natural gas separation", Ph.D. Dissertation, Georgia Institute of Technology, Atlanta (2006).
7 J. T. Chung, C. S. Lee, H. C. Koh, S. Y. Ha, S. Y. Nam, and W. J. Jo, "Polymeric Membrane Modules for Substituting the CO2 Absorption Column in the DME Plant Process", Membr. J., 22, 2, 142-154 (2012).
8 T. S. Chung, S. K. Teoh, and X. Hu, "Formation of ultrathin high-performance polyethersulfone hollow-fiber membranes", J. Membr. Sci., 133, 2, 161-1754 (1997).   DOI
9 Y. N. Chun and S. C. Kim, "Production of hydrogen-rich gas from methane by thermal plasma reform", J Air Waste Manag Assoc, 57, 12, 1447-1451 (2007).   DOI
10 Ozcan and A. N. Akin, "Thermodynamic analysis of methanol steam reforming to produce hydrogen for HT-PEMFC: an optimization study", Int. J. Hydrog. Energy, 44, 27, 14117-14126 (2019).   DOI
11 Y. G Park and Y. S. Yang, "Resourcing of Methane in the Biogas Using Membrane Process", Clean Tech., 20, 4, 406-414 (2014).   DOI
12 M. K. Jeong and S. Y. Nam, "Reviews on Preparation and Membrane Applications of Polybenzimidazole Polymers", Membr. J., 26, 4, 253-265 (2016).   DOI
13 K. H. Seong, J. S. Song, H. C. Koh, S. Y. Ha, M. H. Han, and C. H. Cho, "Effect of Carbonization Conditions on Gas Permeation of Methyl Imide Based Carbon Molecular Sieve Hollow Fiber Membranes", Membr. J., 23, 5, 332-342 (2013).
14 S. H. Kim, K. S. Im, J. H. Kim, H. C. Koh, and S. Y. Nam, "Preparation and Characterization of Nanofiltration Membrane for Recycling Alcoholic Organic Solvent", Membr. J., 31, 3, 228-240 (2021).   DOI
15 M. V. Goltsova, Y. A. Artemenko, G. I. Zhirov, and V. I. Zaitsev, "Video-investigation of reverse hydride transformation in the Pd-H system", Int. J. Hydrog. Energy, 27, 7-8, 757-763 (2002).   DOI
16 E. S. Ryi and J. S. Park, "Research trend of Pdbased hydrogen membrane", J. Ind. Eng. Chem., 14, 3, 46-53 (2011).
17 S. I. Jeon, J. H. Park, and Y. T. Lee, "Fabrication of Pd/YSZ Cermet Membrane for Hydrogen Separation", Membr. J., 21, 2, 148-154 (2011).
18 H. Z. Chen and T. Chung, "CO2-selective membranes for hydrogen purification and the effect of carbon monoxide (CO) on its gas separation performance", Int. J. Hydrogen Energy, 37, 7, 6001-6011 (2012).   DOI
19 J. H. Kim, J. W. Rhim, and S. B. Lee, "Research trend of membrane technology for separation of carbon dioxide from flue gas", Membr. J., 12, 3, 121-142 (2002).
20 J. H. Kim, K. H. Kim, and S. Y. Nam, "Research Trends of Polybenzimidazole-based Membranes for Hydrogen Purification Applications", Appl. Chem. Eng., 31, 5, 453-466 (2020).   DOI
21 Y. H. Park, D. Lee, C. Kim, K. Kang, and Y. Choi, "Characteristics of LPG Fuel Reforming Utilizing Plasma Reformer", J. Korean Inst. Met. Mater., 16, 6, 17-22 (2012).
22 X. Y. Chen, S. Kaliaguine, and D. Rodrigue, "A Comparison between Several Commercial Polymer Hollow Fiber Membranes for Gas Separation", J. Membr. Sep. Technol., 6, 1, 1-15 (2017).   DOI
23 E. P. Favvas, G. C. Kapantaidakis, J. W. Nolan, A. C. Mitropoulos, and N. K. Kanellopoulos, "Preparation, characterization and gas permeation properties of carbon hollow fiber membranes based on MatrimidⓇ5218 precursor", J. Mater. Process. Technol., 186, 102 (2007).   DOI
24 W. I Son and B. S. Kim, "Study on the Effect of Non-Solvent Additive in the Preparation of the Poly(etherimide) Hollow Fiber Membrane", Korean J. Chem. Eng., 39, 4, 397-403 (2001).
25 J. H. Park, D. J. Kim, and S. Y. Nam, "Characterization and Preparation of PEG-Polyimide Copolymer Asymmetric Flat Sheet Membranes for Carbon Dioxide Separation", Membr. J., 25, 6, 547-557 (2015).   DOI
26 Z. K. Xu, L. Q. Shen, Q. Yang, F. Liu, S. Y. Wang, and Y. Y. Xu, "Ultrafiltration hollow fiber membranes from poly(ether imide): preparation, morphologies and properties", J. Membr. Sci., 223, 1-2, 105-118 (2003).   DOI
27 M. Maarefian, S. Bandehali, S. Azami, H. Sanaeepur, and A. Moghadassi, "Hydrogen recovery from ammonia purge gas by a membrane separator: A simulation study", Int, J. Energ. Res., 43, 14, 8217-8229 (2019).
28 S. Sircar and T. C. Golden, "Purification of hydrogen by pressure swing adsorption", Sep Sci Technol, 35, 5, 667-687 (2000).   DOI
29 A. Hasanoglu, I. Demirci, and A. Secer, "Hydrogen production by gasification of Kenaf under subcritical liquid-vapor phase conditions", Int. J. Hydrog. Energy, 44, 27, 14127-14136 (2019).   DOI
30 S. M. Lee and S. S. Kim, "Structural Changes of PVDF Membranes by Phase Separation Control", Korean. Chem. Eng. Res., 54, 1, 57-63 (2016).   DOI
31 S. Sircar, "Production of hydrogen and ammonia synthesis gas by pressure swing adsorption", Sep Sci Technol, 25, 11-12, 1087-1099 (1990).   DOI
32 R. Bhattacharyya, K. Bhanja, and S. Mohan, "Simulation studies of the characteristics of a cryogenic distillation column for hydrogen isotope separation", Int. J. Hydrog. Energy, 41, 9, 5003-5018 (2016).   DOI
33 G. Solowski, M. S. Shalaby, H. Abdallah, A. M. Shaban, and A. Cenian, "Production of hydrogen from biomass and its separation using membrane technology", Renew. Sust. Energ. Rev., 82, 3152-3167 (2018).   DOI
34 Y. Li and T. S. Chung, "Highly selective sulfonated polyethersulfone (SPES)-based membranes with transition metal counterions for hydrogen recovery and natural gas separation", J. Membr. Sci., 308, 1-2, 128-135 (2008).   DOI
35 E. Favre, "Comprehensive Membrane Science and Engineering", E. Drioli, L. Giomo and E. Fontananova, 159-167, Elsevier (2017).
36 T. Graham, "On the absorption and dialytic separation of gases by colloid septa Part I.-Action of a septum of caoutchouc", J. Membr. Sci., 100, 1, 27-31 (1995).   DOI