• Title/Summary/Keyword: Hydrogen safety

Search Result 700, Processing Time 0.031 seconds

Characteristics of Temperature in Reformer Tube and Chemical Reaction for Steam Methane Ratio (수증기-메탄 혼합비에 따른 개질 튜브 내 온도 및 화학반응 특성)

  • Han, Jun Hee;Kim, Ji Yoon;Lee, Seong Hyuk
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.27-33
    • /
    • 2016
  • The aim of numerical study is the investigation of the solid and fluid temperatures in a reformer tube and chemical reaction characteristics of different steam-carbon ratio. We considered conjugate heat transfer contain radiation, convection and conductive heat transfers. This is because steam reforming reaction of hydrocarbon occurred high temperature conditions up to 800 K- 1000 K by using commercial computational fluid dynamics (CFD) code (Fluent ver. 13.0). For numerical simulation, the Reynolds-Averaged Navier-Stokes, momentum and energy equation were employed. In addition, inside of reformer tube is assumed as the porous medium to consider the Nichrome-based catalyst. To analysis characteristics of tube temperature in chemical reaction, we changed steam-methane ratio(SCR) from 1 to 6. As increased SCR, the higher tube temperature and methane conversion were observed. It was obtained that the highest hydrogen production held in SCR of 5.

Development of Human Indices to Determine Both Returning Point of Residents and Damage Restoration after the Chemical Accident (화학사고 후 주민복귀 및 피해복구 시점 결정을 위한 인체지표 개발)

  • Yang, JunYong;Heo, JeongMoo;Lee, HyunSeok;Lee, JunSang;Cho, YongSung;Kim, HoHyun;Park, SangHee
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.5
    • /
    • pp.588-598
    • /
    • 2020
  • Objectives: Human indices were developed to determine returning point of residents and damage restoration after the chemical accident Methods: To determine the returning point of residents after the chemical accident, a new concept, the standard man model was introduced as a human index, in which both H-code and its acute effects were main idea. To evaluate the applicability, a hydrogen fluoride leakage accident in Gumi was applied. The returning point were suggested as the conservative remission period of acute effects among relevant hazard effects and compared with actual returning point. The coverage of each age group were considered with reflecting average daily dose expected for actual residents. In addition, a relief-index as a social-scientific approach was reflected as well to apply the damage restoration Results: Actual returning point of residents in Gumi was 88 days; and that of standard man model suggested was 84 days. The expected amount of exposure at aged 12 or under was at least 2.35 times greater than that of this model, 40s, theoretically. However, their population ratio was less than 1%, so 99% of residents could be applied when the standard man model was applied. The relief-index was as an objective and quantitative methodology to apply the qualitative aspect. Conclusions: Although evaluated as a relatively positive result, there was a limitation such as the number of accident applied to the verification of standard man model. The relief index was also considered, but further research should be carried out to find threshold level for the relief.

Determination of Proton Beam Position Based on Prompt Gamma Ray Detection (즉발감마선을 이용한 양성자 빔 위치 측정에 관한 연구)

  • Seo, Kyu-Seok;Kim, Jong-Won;Kim, Chan-Hyeong
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.69-71
    • /
    • 2004
  • The proton therapy of radiation therapy methods using Bragg Peak which is proton beam's characteristic dose distribution can give a normal tissue lower dose than cancer, comparing with the former existing radiation therapy methods. For exact treatment and patient' safety, we need to know proton beam's position in body, but a proton beam completely stops at treatment region and proton beam's range is uncertainly made by the variety of organs having each different density, so we aren't able to find a proton beam' position by suitable methods yet. With Monte Carlo Computing Method, as a result that we had simulated prompt gamma detection system using correlation of proton beam's absorbed dose distribution about water and prompt gamma distribution by nuclear interaction occurred by collisions of proton and water's hydrogen atoms, we could confirm that a proton beam's position was able to detect by using simulated prompt gamma detection system in body on the real-time

  • PDF

Development and testing of multicomponent fuel cladding with enhanced accidental performance

  • Krejci, Jakub;Kabatova, Jitka;Manoch, Frantisek;Koci, Jan;Cvrcek, Ladislav;Malek, Jaroslav;Krum, Stanislav;Sutta, Pavel;Bublikova, Petra;Halodova, Patricie;Namburi, Hygreeva Kiran;Sevecek, Martin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.597-609
    • /
    • 2020
  • Accident Tolerant Fuels have been widely studied since the Fukushima-Daiichi accident in 2011 as one of the options on how to further enhance the safety of nuclear power plants. Deposition of protective coatings on nuclear fuel claddings has been considered as a near-term concept that will reduce the high-temperature oxidation rate and enhance accidental tolerance of the cladding while providing additional benefits during normal operation and transients. This study focuses on experimental testing of Zr-based alloys coated with Cr-based coatings using Physical Vapour Deposition. The results of long-term corrosion tests, as well as tests simulating postulated accidents, are presented. Zr-1%Nb alloy used as nuclear fuel cladding serves as a substrate and Cr, CrN, CrxNy layers are deposited by unbalanced magnetron sputtering and reactive magnetron sputtering. The deposition procedures are optimized in order to improve coating properties. Coated as well as reference uncoated samples were experimentally tested. The presented results include standard long-term corrosion tests at 360℃ in WWER water chemistry, burst (creep) tests and mainly single and double-sided high-temperature steam oxidation tests between 1000 and 1400℃ related to postulated Loss-of-coolant accident and Design extension conditions. Coated and reference samples were characterized pre- and post-testing using mechanical testing (microhardness, ring compression test), Thermal Evolved Gas Analysis analysis (hydrogen, oxygen concentration), optical microscopy, scanning electron microscopy (EDS, WDS, EBSD) and X-ray diffraction.

Test Gases for Gas Burning Appliances of New Gas Group (새 가스그룹의 가스기기 시험가스)

  • Ha, Young-Cheol;Kim, Sung-Min;Lee, Chang-Eon;Choi, Kyoung-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.439-444
    • /
    • 2011
  • To determine the test gases for gas appliances of new gas group, the interrelation between gas interchangeability, including thermal efficiency, of 13A gas appliances and present 13A test gases was experimentally investigated. The test results show that the Wobbe indices in the case of incomplete combustion and the flame lifting limit gas for the new gas group are respectively 2% higher than the upper limit and 1% lower than the lower limit of the Wobbe index range. The most suitable composition of R gas is 96 mol% of methane and 4 mol% of propane; LNG could be also used as R gas. Further, analysis results showed that the hydrogen concentration of flash back limit gas could be lowered from 30 vol% to 23 vol%.

A Study on High Efficiency Power Conditioning System for Safety Operation of PEMFC_type Fuel Cell Generation System (고분자전해질형 연료전지 발전시스템의 안전운전을 위한 고성능 전력변환기에 관한 연구)

  • Kwak Dong-Kurl
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.1 s.38
    • /
    • pp.57-61
    • /
    • 2006
  • Fuel cells are direct current (DC) power generators. They generate electricity through an electrochemical process that converts the energy stored in a fuel directly into electricity. Fuel cells have many benefits, which produce no particulate matter, nitrogen or sulfur oxides. And they have few moving parts and produce little or no noise. When fueled by hydrogen, they yield only heat and water as byproducts. Their wide application can reduce our dependence on fossil fuels and foreign sources of petroleum. This paper is studied on a high efficiency power conditioning system (PCS) applied to the proton exchange membrane fuel cell (PEMFC) generation system. This paper is designed to a novel PCS circuit topology of high efficiency. Some experimental results of the proposed PCS is confirmed to the validity of the analytical results.

  • PDF

Modified parity space averaging approaches for online cross-calibration of redundant sensors in nuclear reactors

  • Kassim, Moath;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • v.50 no.4
    • /
    • pp.589-598
    • /
    • 2018
  • To maintain safety and reliability of reactors, redundant sensors are usually used to measure critical variables and estimate their averaged time-dependency. Nonhealthy sensors can badly influence the estimation result of the process variable. Since online condition monitoring was introduced, the online cross-calibration method has been widely used to detect any anomaly of sensor readings among the redundant group. The cross-calibration method has four main averaging techniques: simple averaging, band averaging, weighted averaging, and parity space averaging (PSA). PSA is used to weigh redundant signals based on their error bounds and their band consistency. Using the consistency weighting factor (C), PSA assigns more weight to consistent signals that have shared bands, based on how many bands they share, and gives inconsistent signals of very low weight. In this article, three approaches are introduced for improving the PSA technique: the first is to add another consistency factor, so called trend consistency (TC), to include a consideration of the preserving of any characteristic edge that reflects the behavior of equipment/component measured by the process parameter; the second approach proposes replacing the error bound/accuracy based weighting factor ($W^a$) with a weighting factor based on the Euclidean distance ($W^d$), and the third approach proposes applying $W^d$, TC, and C, all together. Cold neutron source data sets of four redundant hydrogen pressure transmitters from a research reactor were used to perform the validation and verification. Results showed that the second and third modified approaches lead to reasonable improvement of the PSA technique. All approaches implemented in this study were similar in that they have the capability to (1) identify and isolate a drifted sensor that should undergo calibration, (2) identify a faulty sensor/s due to long and continuous missing data range, and (3) identify a healthy sensor.

Determination of Glucose in Whole Blood by Chemiluminescence Method (화학발광법에 의한 전혈 중의 당 정량)

  • Lee, Sang Hak;Choi, Sang Seob
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.3
    • /
    • pp.223-229
    • /
    • 2001
  • A method for the determination of glucose in human whole blood by chemiluminescence method using a stopped flow injection system has been studied. The method is based on the differences in the chemiluminescence intensities of luminol due to the different amounts of hydrogen peroxide produced from the glucose oxidase catalyzed reaction. The enzyme reactor was prepared by immobilization of glucose oxidase on aminopropyl glass beads and the chemiluminescence from a flow cell was measured by means of an optical fiber bundle. In order to obtain the optimum experimental conditions, effects of pH for the chemiluminogenic solution and enzyme reactor, flow rate and temperature on the chemiluminescence intensity were investigated. The calibration curve obtained under optimum experimental conditions was linear over the range from $1.0{\times}10^{-1}$ mM to 7.0 mM and the detection limit was $6.0{\times}10^{-2}$ mM. The proposed method was applied to the determination of glucose in whole human blood sample and the results were compared with those obtained by an official method. The present method was also evaluated by the results of recovery experiments.

  • PDF

Cosmetic Potential of Enzymatic Treated Ginseng Leaf

  • Lee, Hyun-Sun;Lee, Hyun-Jung;Cho, Hye-Jin;Park, Sung-Sun;Kim, Jin-Man;Suh, Hyung-Joo
    • Journal of Ginseng Research
    • /
    • v.34 no.3
    • /
    • pp.227-236
    • /
    • 2010
  • The objective of this study was to evaluate the potential use of ginseng leaf as a cosmetic material. In this research, we employed enzymatic treated ginseng leaf by using Ultraflo L to improve the recovery of ginsenosides from the ginseng leaf and studied the biological activities and skin safety of the enzymatic treated ginseng leaf for use as a cosmetic material. The total ginsenoside contents of the non-enzymatic treated ginseng leaf (NEGL) and Ultraflo L treated ginseng leaf (UTGL) were 271 and 406 mg/g, respectively. The level of metabolite ginsenosides (sum of Rg2, Rg3, Rg5, Rk1, compound K, Rh1, Rh2, and F2) was higher in UTGL (93.1 mg) compared to NEGL (62.4 mg) in one gram ginseng leaf extract. The increase in amounts of ginsenoside types in UTGL compared to NEGL was generally 140% to 157%. UTGL exhibited relatively higher 2,2-diphenyl-2-picrylhydrazyl hydrate ($IC_{50}$, 2.8 mg/mL) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt ($IC_{50}$, 1.6 mg/mL) radical scavenging activities compared to NEGL (4.8 mg/mL and 2.2 mg/mL). The UTGL group showed normalized hydrogen peroxide, lipid peroxidation and visual wrinkling grade induced-UVB exposure. The UTGL did not induce any adverse reactions such as erythema and edema on intact skin sites; however, some guinea pigs treated with UTGL on abraded skin sites showed very slight erythema. The primary irritation index (PII) score of UTGL was 0.05 and it was classified as a practically non-irritating material (PII, 0 to 0.5). In skin sensitization tests with guinea pigs, UTGL had a positive rate of skin sensitization at 40%, and the mean evaluation score was 0.4.

Design and evaluation of an innovative LWR fuel combined dual-cooled annular geometry and SiC cladding materials

  • Deng, Yangbin;Liu, Minghao;Qiu, Bowen;Yin, Yuan;Gong, Xing;Huang, Xi;Pang, Bo;Li, Yongchun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.178-187
    • /
    • 2021
  • Dual-cooled annular fuel allows a significant increase in power density while maintaining or improving safety margins. However, the dual-cooled design brings much higher Zircaloy charge in reactor core, which could cause a great threaten of hydrogen explosion during severe accidents. Hence, an innovative fuel combined dual-cooled annular geometry and SiC cladding was proposed for the first time in this study. Capabilities of fuel design and behavior simulation were developed for this new fuel by the upgrade of FROBA-ANNULAR code. Considering characteristics of both SiC cladding and dual-cooled annular geometry, the basic fuel design was proposed and preliminary proved to be feasible. After that, a design optimization study was conducted, and the optimal values of as-fabricated plenum pressure and gas gap sizes were obtained. Finally, the performance simulation of the new fuel was carried out with the full consideration of realistic operation conditions. Results indicate that in addition to possessing advantages of both dual-cooled annular fuel and accident tolerant cladding at the same time, this innovative fuel could overcome the brittle failure issue of SiC induced by pellet-cladding interaction.