• Title/Summary/Keyword: Hydrogen risk

Search Result 203, Processing Time 0.035 seconds

Hydrogen Industry Cycle Infrastructure Safety Analysis (수소산업 전주기 인프라시설 안전성 분석)

  • WOOIL PARK;SEULKI CHOI;INWOO LEE;SEUNGKYU KANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.795-802
    • /
    • 2022
  • Korea is showing its appearance as a leading country in the hydrogen economy by establishing policies for revitalizing the hydrogen economy and enacting the 「Hydrogen Economy Promotion and Hydrogen Safety Management Act」 for the first time in the world. In addition, domestic hydrogen facilities are using hydrogen energy safely through world-class safety management compared to overseas advanced countries. However, in order to enhance the safety of the rapidly diversifying hydrogen industry and rapid technology development, such as the introduction of liquefied hydrogen, some institutional improvements are needed. In this regard, this paper intends to analyze the results of safety inspections on 13 representative facilities and prepare safety improvement plans to establish preemptive safety measures.

Development of Standards for the Use of Liquefied Hydrogen for Ship Using Risk Assessment Techniques (위험성 평가기법을 활용한 선박용 액화수소 사용시설 기준개발)

  • Young-taeg, Hur;Hye-Soo, Han;Gyoung-min, Noh;Hee-soo, Chung;Chung-keun, Chae
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.6
    • /
    • pp.52-58
    • /
    • 2022
  • According to the government's roadmap for revitalizing the hydrogen economy, various industries carry out projects using liquefied hydrogen as an energy source. However, safety standards necessary for operational demonstration projects are not prepared in Korea, thus, it is necessary to prepare safety standards as soon as possible. Therefore, in order to secure the safety of liquefied hydrogen instrumentation and handling facilities, it is necessary to prepare safety standards that comprehensively consider the risk of liquefied hydrogen. This study aims to prioritize safety standard items using ETA, FMEA, and AHP, which are risk assessment techniques, to present the feasibility of selecting safety standard items.

A Study on Safety Impact Assessment of a Multiple Hydrogen Refueling Station (다차종 동시 충전을 위한 수소 스테이션의 안전 영향 평가 연구)

  • Boo-Seung Kim;Kyu-Jin Han;Seung-Taek Hong;Youngbo Choi
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.85-99
    • /
    • 2024
  • As the proliferation of hydrogen electric vehicles accelerates, there is observed diversification in hydrogen refueling station models. This diversification raises safety concerns for different types of stations. This study conducted a quantitative risk assessment of a multi-vehicle hydrogen station, capable of simultaneously refueling cars, buses, and trucks. Utilizing Gexcon's Effects&Riskcurves Software, scenarios of fire and explosion due to hydrogen leaks were assessed. The study calculated the impact distances from radiative heat and explosion overpressure, and measured risks to nearby buildings and populations. The largest impact distance was from fires and explosions at dispensers and high-pressure storage units. High-pressure storage contributes most significantly to personal and societal risk. The study suggests that conservative safety distances and proper protective measures for these facilities can minimize human and material damage in the event of a hydrogen leak.

Safety risk management of ammonia to scale-up hydrogen production for transport and storage (수송/저장용 수소 생산 확대를 위한 암모니아의 안전 위험 관리 표준 동향)

  • HyungKuk Ju;Hyeokjoo Lee;Chang Hyun Lee;Sungyool Bong
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.371-379
    • /
    • 2023
  • Ammonia, which is closely related to our lives, has a significant impact on our lives as a representative substance for crop cultivation. Recently, it has gained attention as an efficient and productive hydrogen/storing substance that can replace fossil fuels. Efforts are being made to utilize it as a renewable energy source through thermochemical and electrochemical reactions. However, the use of ammonia, which encompasses the era, carries inherent toxicity, so a comprehensive understanding of ammonia safety is necessary. To ensure safety in the transportation and storage of ammonia and chemical substances domestically and internationally, national and organizational standards are being developed and provided through documents and simple symbols to help people understand. This review explores the chemical characteristics of ammonia, its impact on human health, and the global trends in safety standards related to ammonia. Through this examination, the paper aims to contribute to the discourse on the safety and risk management of ammonia transport and storage, crucial for achieving carbon neutrality and expanding the hydrogen economy.

A Study on Explosive Hazardous Areas in Hydrogen Handling Facility (수소 취급설비의 폭발위험장소에 관한 연구)

  • PYO, DON-YOUNG;LIM, OCK-TAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.1
    • /
    • pp.29-34
    • /
    • 2019
  • Safety of hydrogen handling facilities is needed as supply of hydrogen cars has been expanded recently. In this study, the adequacy of safety regulations of hydrogen handling facilities and the risk of damage with hydrogen leakage were studied. The range of explosion hazard location of the hydrogen filling plant was investigated using the computational fluid dynamics (CFD) method, Explosive hazardous area is influenced by leakage type, hole size and sectional area. When the conditions of KS standard are applied, range explosive hazardous area is expanded 7.05 m, maximum. It is about 7 times larger than exceptional standard of hydrogen station. Meanwhile, distance from leakage point to 25% LEL of hydrogen is investigated 1.6 m. Considering the shape of charging hose, regulation of hydrogen station is appropriate.

Analysis of Safety by Expansion of Hydrogen Charging Station Facilities (수소충전소 설비 증설에 따른 안전성 해석)

  • Park, Woo-Il;Kang, Seung-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.83-90
    • /
    • 2020
  • This study conducted a risk assessment using the HyKoRAM program created by international joint research. Risk assessment was conducted based on accident scenarios and worst-case scenarios that could occur in the facility, reflecting design specifications of major facilities and components such as compressors, storage tanks, and hydrogen pipes in the hydrogen charging station, and environmental conditions around the demonstration complex. By identifying potential risks of hydrogen charging stations, we are going to derive the worst leakage, fire, explosion, and accident scenarios that can occur in hydrogen storage tanks, treatment facilities, storage facilities, and analyze the possibility of accidents and the effects of damage on human bodies and surrounding facilities to review safety.

The Influence of Self-Efficacy for Hydrogen Electric Vehicles on Trust (수소전기차에 대한 자기효능감이 신뢰에 미치는 영향)

  • Choi, Hyeok-Ra;Kim, Seon-Myung;Kim, Heaseon
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.4
    • /
    • pp.414-423
    • /
    • 2021
  • This study establishes a conceptual model that can clarify the causal relationship between self-efficacy, expected value and perceived risk, and trust for hydrogen Electric vehicles, which are expected to play an important role in activating hydrogen electric vehicles, and verify this through empirical research. As a specific research goal, first, the concepts of self-efficacy, perceived value, perceived risk, and trust were defined conceptually and operationally, centering on prior research. Second, a research model was presented and verified through an empirical analysis in order to confirm the influence relationship between the self-efficacy, perceived value, perceived risk, and trust derived through prior research. As a result of the study, it was found that self-efficacy had a significant effect on perceived value and trust. Also, perceived value and perceived risk were found to have a significant effect on perceived trust.

A Study on the Application of Business Disaster Reduction Activities to Strengthen the Business Continuity of Hydrogen Charging Stations (수소충전소의 사업연속성 강화를 위한 기업재해경감활동 적용 연구)

  • Jang Won Lee;Chang Soo Kim
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.411-420
    • /
    • 2023
  • Purpose: In order to compensate for the limitations of the risk assessment of hydrogen charging stations, it is proposed to apply business disaster reduction activities as a way to strengthen safety and business continuity for accidents that may occur during operation. Method: We explored the application of business disaster reduction activities that can reduce, eliminate, transfer, and accept risks by classifying risks according to the passage of time in the installation and operation of hydrogen charging stations, identifying key tasks, deriving risk scenarios. Result: Existing research results are appropriately applied to the risk assessment conducted in the stage before the installation of hydrogen charging stations. However, there is a limit to the risks that can occur at the operational stage, so applying business disaster reduction activities with several example scenarios has resulted in that it can be applied as a way to strengthen safety and business continuity. Conclusion: All of the currently implemented risk assessments for hydrogen charging stations are being used appropriately. However, it proposes business disaster reduction activities that apply various risk scenarios as an evaluation and response to possible risks at the operational stage.

THE NUMERICAL SIMULATION OF HYDROGEN DIFFUSION FOR THE HYDROGEN LEAKAGE IN TUNNEL (터널 내 수소연료 자동차의 수소 누설로 인한 수소 확산에 대한 수치해석 연구)

  • Ahn, Hyuk-Jin;Jung, Jae-Hyuk;Hur, Nahm-Keon;Lee, Moon-Kyu;Yong, Gee-Joong
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.47-54
    • /
    • 2010
  • In the present study, a numerical simulation for the diffusion of hydrogen leakage of FCV(Fuel Cell Vehicle) in a tunnel was performed to aid the assessment of risk in case of leakage accident. The temporal and spatial distributions of the hydrogen concentration around FCV are predicted from the present numerical analyses. Flammable region of 4-74% and explosive region of 18-59% hydrogen by volume was identified from the present results. Factors influencing the diffusion of the hydrogen jet were examined to evaluate the effectiveness of tunnel ventilation system for relieving the accumulation of the leaked hydrogen gas. The distribution of the concentration of the leaked hydrogen for various cases can be used as a database in various applications for the hydrogen safety.

Study on the Recovery Process and Risk Management for Fusion Hydrogen Isotopes (핵융합 수소동위원소의 회수공정과 위험관리에 관한 연구)

  • Jung, Woo-Chan;Moon, Hung-Man;Chang, Min-Ho;Lee, Hyeon-Gon;Hwang, Myung-Whan;Woo, In-Sung
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.81-89
    • /
    • 2019
  • This study deals with a process for recovering hydrogen isotopes from fusion exhaust gas. The goal of this process is to remove impurities, maximally recover only pure hydrogen isotopes. Experiments using hydrogen and deuterium were conducted to confirm the possibility of the recovery of hydrogen isotopes. In the exhaust gas containing H2, impurities was removed in the membrane process, and only pure H2 was recovered. And the H2 in the exhaust gas of the He-GDC(Glow Discharge Cleaning) process was recovered using a cryogenic adsorption process. In addition, HAZOP analysis was performed for qualitative risk assessment. For scenario analysis, the damage prediction ALOHA program was used to calculate the range of influence. Finally measures were sought to improve safety.