DOI QR코드

DOI QR Code

Safety risk management of ammonia to scale-up hydrogen production for transport and storage

수송/저장용 수소 생산 확대를 위한 암모니아의 안전 위험 관리 표준 동향

  • HyungKuk Ju (Department of Energy Engineering, Dankook University) ;
  • Hyeokjoo Lee (Department of Energy Engineering, Dankook University) ;
  • Chang Hyun Lee (Department of Energy Engineering, Dankook University) ;
  • Sungyool Bong (Department of Chemistry Education, Kongju National University)
  • 주형국 (단국대학교 과학기술대학 에너지공학과) ;
  • 이혁주 (단국대학교 과학기술대학 에너지공학과) ;
  • 이창현 (단국대학교 과학기술대학 에너지공학과) ;
  • 봉성율 (공주대학교 화학교육과)
  • Received : 2023.11.27
  • Accepted : 2023.12.08
  • Published : 2023.12.31

Abstract

Ammonia, which is closely related to our lives, has a significant impact on our lives as a representative substance for crop cultivation. Recently, it has gained attention as an efficient and productive hydrogen/storing substance that can replace fossil fuels. Efforts are being made to utilize it as a renewable energy source through thermochemical and electrochemical reactions. However, the use of ammonia, which encompasses the era, carries inherent toxicity, so a comprehensive understanding of ammonia safety is necessary. To ensure safety in the transportation and storage of ammonia and chemical substances domestically and internationally, national and organizational standards are being developed and provided through documents and simple symbols to help people understand. This review explores the chemical characteristics of ammonia, its impact on human health, and the global trends in safety standards related to ammonia. Through this examination, the paper aims to contribute to the discourse on the safety and risk management of ammonia transport and storage, crucial for achieving carbon neutrality and expanding the hydrogen economy.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (RS-2023-00241035, 1415188062, Clean Hydrogen and Ammonia Innovation Research Center).

References

  1. V. Pattabathula, J. Richardson, Introduction to ammonia production, CEP Magazine, (2016) 69-75. 
  2. A. Valera-Medina, A. Roldan, Ammonia from Steelworks, in: Inamuddin, R. Boddula, A.M. Asiri (Eds.), Sustain. Ammon. Prod., Springer International Publishing, Cham, (2020) 69-80. 
  3. S. Chatterjee, R.K. Parsapur, K. W. Huang, Limitations of ammonia as a hydrogen energy carrier for the transportation sector, ACS Energy Letters, 6 (2021) 4390-4394.  https://doi.org/10.1021/acsenergylett.1c02189
  4. Y. Kojima, Safety of ammonia as a hydrogen energy carrier, International Journal of Hydrogen Energy, (2023) article in press. 
  5. S. Devkota, Storage Potential of Green Hydrogen, (2023) 
  6. N. M. Adli, H. Zhang, S. Mukherjee, G. Wu, Review-ammonia oxidation electro-catalysis for hydrogen generation and fuel cells, Journal of the Electrochemical Society, 165 (2018) J3130. 
  7. L. A. Diaz, G. G. Botte, Electrochemical Deammonification of synthetic swine wastewater, Industrial & Engineering Chemistry Research, 51 (2012) 12167-12172. 
  8. A. Anglada, A. Urtiaga, I. Ortiz, Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications, Journal of Chemical Technology & Biotechnology, 84 (2009) 1747-1755.  https://doi.org/10.1002/jctb.2214
  9. P. Canizares, R. Paz, J. Lobato, C. Saez, M.A. Rodrigo, Electrochemical treatment of the effluent of a fine chemical manufacturing plant, Journal of Hazardous Materials, 138 (2006) 173-181.  https://doi.org/10.1016/j.jhazmat.2006.05.056
  10. L. Candido, J.A.C.P. Gomes, Evaluation of anode materials for the electro-oxidation of ammonia and ammonium ions, Materials Chemistry and Physics, 129 (2011) 1146-1151.  https://doi.org/10.1016/j.matchemphys.2011.05.080
  11. Y. Gendel, O. Lahav, Revealing the mechanism of indirect ammonia electrooxidation, Electrochimica Acta, 63 (2012) 209-219.  https://doi.org/10.1016/j.electacta.2011.12.092
  12. L. A. Diaz, G.G. Botte, Mathematical modeling of ammonia electrooxidation kinetics in a Polycrystalline Pt rotating disk electrode, Electrochimica Acta, 179 (2015) 519-528.  https://doi.org/10.1016/j.electacta.2014.12.162
  13. B. X. Dong, H. Tian, Y. C. Wu, F. Y. Bu, W.L. Liu, Y.L. Teng, G.W. Diao, Improved electrolysis of liquid ammonia for hydrogen generation via ammonium salt electrolyte and Pt/Rh/Ir electrocatalysts, International Journal of Hydrogen Energy, 41 (2016) 14507-14518.  https://doi.org/10.1016/j.ijhydene.2016.06.212
  14. "<연속기획> 수소경제 주목되는 기술/제품 56. 에이이에스텍의 '무수 암모니아 전기분해 기술'", 월간수소경제, last modified Sep 01. 2023, accessed Nov 13. 2023, https://www.h2news.kr/news/article.html?no=11243. 
  15. Compendium of Chemical Hazards, Public Health England, 2014790 (2019) 1-20. 
  16. US EPA, Access Acute Exposure Guideline Levels (AEGLs) Values, last modified Jun 20. 2023, accessed Nov 13. 2023, https://www.epa.gov/aegl/access-acute-exposure-guideline-levels-aegls-values.
  17. Emergency planning and the acute toxic potency of inhaled ammonia, 107 (1999) 617-627.  https://doi.org/10.1289/ehp.99107617
  18. F. Pedersen, R. S. Selig, Predicting the consequences of short-term exposure to high concentrations of gaseous ammonia, Journal of Hazardous Materials, 21 (1989) 143-159. 
  19. W. F. T. Berge, A. Zwart, L. M. Appelman, Concentration-time mortality response relationship of irritant and systemically acting vapours and gases, Journal of Hazardous Materials, 13 (1986) 301-309. https://doi.org/10.1016/0304-3894(86)85003-8
  20. J. Labovsky, L. Jelemensky, Verification of CFD pollution dispersion modelling based on experimental data, Journal of Loss Prevention in the Process Industries, 24 (2011) 166-177.  https://doi.org/10.1016/j.jlp.2010.12.005
  21. W. Tan, H. Du, L. Liu, T. Su, X. Liu, Experimental and numerical study of ammonia leakage and dispersion in a food factory, Journal of Loss Prevention in the Process Industries, 47 (2017) 129-139. https://doi.org/10.1016/j.jlp.2017.03.005
  22. A Hazard Assessment of Ammonia as a Fuel, Ammon, Fuel Assoc, last modified Oct 20. 2013, accessed Nov 13. 2023, https://nh3fuelassociation.org/2013/10/20/a-hazard-assessment-of-ammonia-as-a-fuel/.
  23. M.A. Mohamed, D.H. Wood, Computational study of the effect of trees on wind flow over a building, Sustainable Energy Research, 2 (2015) 1-8. https://doi.org/10.1186/s40807-014-0002-9
  24. J. R. Bakke, K. van Wingerden, P. Hoorelbeke, B. Brewerton, A study on the effect of trees on gas explosions, Journal of Loss Prevention in the Process Industries, 23 (2010) 878-884.  https://doi.org/10.1016/j.jlp.2010.08.007
  25. Emergency planning for ammonia-based refrigeration systems guide, (2018) 1-19. 
  26. H. K. Ju, S. Bong, S. Park, C. H. Lee, Understanding thermodynamics of operating voltage and efficiency in PEM water electrolysis system for carbon neutrality and green hydrogen energy transition, Journal of the Korean Electrochemical Society, 26 (2023) 56-63.