DOI QR코드

DOI QR Code

A Study on Safety Impact Assessment of a Multiple Hydrogen Refueling Station

다차종 동시 충전을 위한 수소 스테이션의 안전 영향 평가 연구

  • Boo-Seung Kim (Institute of Gas Safety R&D, Korea Gas Safety Corporation) ;
  • Kyu-Jin Han (Institute of Gas Safety R&D, Korea Gas Safety Corporation) ;
  • Seung-Taek Hong (Institute of Gas Safety R&D, Korea Gas Safety Corporation) ;
  • Youngbo Choi (Dept. of Safety Engineering, Chungbuk National University)
  • 김부승 (한국가스안전공사 가스안전연구원) ;
  • 한규진 (한국가스안전공사 가스안전연구원) ;
  • 홍승택 (한국가스안전공사 가스안전연구원) ;
  • 최영보 (충북대학교 안전공학과)
  • Received : 2023.11.10
  • Accepted : 2024.01.12
  • Published : 2024.03.31

Abstract

As the proliferation of hydrogen electric vehicles accelerates, there is observed diversification in hydrogen refueling station models. This diversification raises safety concerns for different types of stations. This study conducted a quantitative risk assessment of a multi-vehicle hydrogen station, capable of simultaneously refueling cars, buses, and trucks. Utilizing Gexcon's Effects&Riskcurves Software, scenarios of fire and explosion due to hydrogen leaks were assessed. The study calculated the impact distances from radiative heat and explosion overpressure, and measured risks to nearby buildings and populations. The largest impact distance was from fires and explosions at dispensers and high-pressure storage units. High-pressure storage contributes most significantly to personal and societal risk. The study suggests that conservative safety distances and proper protective measures for these facilities can minimize human and material damage in the event of a hydrogen leak.

수소전기차의 보급 확대가 빠르게 이루어지며 수소충전소의 모델 또한 다양화되고 있다. 이에 따라 종류별 수소 충전소의 안전에 대한 이슈가 대두되고 있다. 본 연구에서는 승용·버스·트럭 등 다차종 동시 수소충전이 가능한 수소 스테이션의 정량적 위험성평가를 진행하였다. 정량적 위험성평가에 범용적으로 사용되는 Gexcon 사(社)의 Effects&Riskcurves Software를 활용하여 수소 누출에 따른 화재, 폭발 등의 시나리오를 부여하였다. 이를 통해 복사 열, 폭발 과압에 의한 피해 영향 거리를 계산해냈으며, 주변 건물 및 인구에 미치는 위험도를 측정하였다. 피해 영향 거리가 가장 크게 나타난 것은 충전설비 및 고압 압축가스 설비의 화재 및 폭발이었으며 개인적 및 사회적 위험도에 가장 크게 기여한 설비는 고압 압축가스 설비로 나타났다. 이에 따라 충전설비 및 압축가스 설비에 대한 안전거리를 보수적으로 책정하며 적절한 방호조치를 설치한다면 수소 누출 사고 발생 시 인적·물적 피해 최소화에 기여할 수 있을 것으로 검토된다.

Keywords

Acknowledgement

본 연구는 산업통상자원부(MOTIE) 및 한국에너지기술평가원(KETEP)의 2020년의 산업기술혁신사업 지원으로 수행되었습니다.(No. 20203010040010, 수소전기차 다차종 동시충전을 위한 광역수소충전소 핵심기술 개발)

References

  1. MOTIE, Hydrogen Safety Management Roadmap 2.0, Energy Safety Division, Ministry of Trade, Industry, Energy, (2023)
  2. I, Glassman., Combustion, 3rd ed., New York: Academic Press, (1996)
  3. Kim, H. J ., and Jung, E. S.,"A Study on Safety Guidelines for Hydrogen Refueling Stations at Expressway Service Area using Quantitative Risk Assessment", KHNES, 32(6), 551-564, (2021)
  4. Joe, C. H., and Kim. D. H.,"Quantitative risk assessment of a mobile hydrogen refueling station in korea", International Journal of Hydrogen Energy, 47(78), 33541-33549,
  5. Kiyotaka, T.,"Quantitative risk assessment of the interior of a hydrogen refueling station considering safety barrier systems", International Journal of Hydrogen Energy, 44(41), 23522-23531, (2019)
  6. Kang, S. K., "A Study on Safety Improvement for Packaged Hydrogen Refueling Station by Risk Assessment", KHNES, 28(6), (2017)
  7. Kim, K. Y., and Jeong, Y. J., Technical Guidelines for Accident Damage Prediction, KOSHA GUIDE P-102-2021, Korea Occupational Safety and Health Agency, (2021)
  8. Brian D, Ehrhart., and Ethan. S. Hecht., "Hydrogen Plus Other Alternative Fuels Risk Assessment Models (HyRAM+) Version 5.0 Technical Reference Manual, SAND2022-16425, Sandia National Laboratories, (2022)
  9. JL, Woodward., Source Modeling-Discharge Rates, Process safety Baker Eng. and Risk Consultants, Inc., San Antonio, TX, USA, (2014)
  10. Katrina M, Groth, Jeffrey L. LaChance, and Aaron P. Harris., Early-Stage Quantitative Risk Assessment to Support Development of Codes and Standard Requirements for Indoor Fueling of Hydrogen Vehicles, SAND2012-10150", Sandia National Laboratories, (2012)
  11. P. A.M, Uijt de Haag, and B.J.M. Ale., Guideline for quantitative risk assessment, Purple book Part one CPR-RE, TNO, National Institute of Public Health and the Environment(RVIM), (2005)
  12. Korea Occupational Safety and Health Agency, Guidelines for Describing Worst case and Alternative Accident Scenarios, KOSHA GUIDE P-107- 2020, (2020)
  13. Korea Gas Safety, Facility/Technical/Inspection Code for Fuel Vehicles Refueling by Type of Compressed Hydrogen Delivery, KGS CODE FP 217, (2022)
  14. C, J. H. Van den Bosch, R.A.P.M. Weterings., Methods for the calculation of physical effects, Yellow book CPR 14E, TNO, Ministere van Verkeer en Waterstaat, Third edition, (2005)
  15. HSE, Indicative human vulnerability to the hazardous agents present offshore for application in risk assessment of major accidents, HID Semi Permanent Circular no. SPC/Tech/OSD/30. [Online]., (2010) [cited 2023. Available from: https://www.hse.gov.uk/foi/internalops/hid_circs/technical_osd/spc_tech_osd_30/]
  16. IOGP, "Risk Assessment Data Directory, Vulnerability of humans", International Association of Oil&Gas Producers, 434(14), 2023
  17. V, J. Clancey, Diagnostic Features of Explosion Damage, paper presented at the sixth International Meeting of Foren-sic Sciences, Edinburgh, (1972)
  18. Daniel A, Crowl., and Joseph F, Louvar., Chemical Process Safety, Fundamentals with Applications, Third edition, Pearson Education, Inc., Prentice hall international series in the physical and chemical engineering sciences, (2011)
  19. Ir, A.J. Roos., Ir, W.P.M. Merx, Methods for the determination of possible damage, TNO Green book, First edition, (1992)
  20. Center for Chemical Process Safety, Guidelines for Developing Quantitative Safety Risk Criteria, Appendix B, American Institute of Chemical Engineers, INC., (2009)
  21. Korea Gas Safety Corp., Guidelines for Safety Impact Assessment of Hydrogen vehicle refueling station, (2022)