• 제목/요약/키워드: Hydrogen refueling simulation

검색결과 12건 처리시간 0.022초

3차 상태방정식을 이용한 수소 충전 온도 거동 모사 (Simulation of Temperature Behavior in Hydrogen Tank During Refueling Using Cubic Equations of State)

  • 박병흥
    • 한국수소및신에너지학회논문집
    • /
    • 제30권5호
    • /
    • pp.385-394
    • /
    • 2019
  • The analysis of temperature behavior of a hydrogen tank during refueling is of significance to clarify the safety of the compressed hydrogen storage in vehicles since the temperature at a tank rises with inflow of hydrogen. A mass balance and an energy balance were combined to obtain analytical model for temperature change during the hydrogen refueling. The equation was coupled to Peng-Robinson-Gasem (PRG) equation of state (EOS) for hydrogen. The PRG EOS was adopted after comparison with other four different cubic EOSs. A parameter of the model was determined to fit data from experiments of various inlet flow rates and temperatures. The temperature and pressure change with refueling time were obtained by the developed model. The calculation results revealed that the extent of precooling was more effective than the flow rate control.

캐스케이드 시스템 기반 수소 충전소를 이용한 대형 수소 연료 전지 차량 연속 충전 분석 (Analysis of Back-to-back Refueling for Heavy Duty Hydrogen Fuel Cell Vehicles Using Hydrogen Refueling Stations Based on Cascade System)

  • 심규석;박병흥
    • 한국수소및신에너지학회논문집
    • /
    • 제35권3호
    • /
    • pp.300-309
    • /
    • 2024
  • Hydrogen utilization in the transportation sector, which relies on fossil fuels, can significantly reduce greenhouse gas by using to hydrogen fuel cell vehicles, and its adoption depends performance of hydrogen refueling station. The present study developed a model to simulate the back-to-back filling process of heavy duty hydrogen fuel cell vehicles at hydrogen refueling stations using a cascade method. And its quantitatively evaluated hydrogen refueling station performance by simulating various mass flow rates and storage tank capacity combinations, analyzing vehicle state of charge (SOC) of vehicles. In the cascade refueling system, the capacity of the high-pressure storage tank was found to have the greatest impact on the reduction of filling time and improvement of efficiency.

모델링 및 시뮬레이션을 통한 수소충전 프로토콜 영향인자 평가 (Evaluation of Influential Factors of Hydrogen Fueling Protocol by Modeling and Simulation)

  • 채충근;강수연;김한나;채승빈;김용규
    • 한국수소및신에너지학회논문집
    • /
    • 제30권6호
    • /
    • pp.513-522
    • /
    • 2019
  • It is not easy to refuel quickly and safely with 70 MPa hydrogen. This is because the temperature in the vehicle tank rises sharply due to Joule-Thomson effect, etc. Thus protocols such as SAE J2601 in the United States and JPEC-S 0003 in Japan were established. However, they have the problem of over-complexity and lack of versatility by setting the preconditions for hot and cold cases and introducing a number of look-up tables. This study was conducted with the ultimate goal of developing new protocols based on complete real-time communication. Thermodynamic models were made and programs were developed for hydrogen refueling simulations. Simulation results confirmed that there are five parameters in the influencing factors of the hydrogen refueling protocol.

수소 압축기 내장형 충전 탱크의 벨로우즈 강도 성능 향상을 위한 형상 설계 파라미터 연구 (Parametric Study of Shape Design for Strength Performance Enhancement of Bellows in Hydrogen Compressor-embedded Refueling Tank)

  • 김지형;송창용
    • 한국산업융합학회 논문집
    • /
    • 제27권1호
    • /
    • pp.39-46
    • /
    • 2024
  • As the development of hydrogen vehicles has accelerated in recent years, it is necessary to develop a storage tank for hydrogen fueling stations capable of high-pressure charging, and for this purpose, a new system with a compressor-embedded refueling tank is required. In this study, the parametric study of shape design based on strength performance evaluation was carried out to find the optimal shape design of bellows, the core component of compressor-embedded refueling tank for a newly developed hydrogen refueling station capable of high-pressure charging above 1,000 bar. The design factors for parametric study were contour shape and radius of bellows, and the performance factors were the maximum stress and the gap distance in the contact direction. In the shape design of the compressor bellows for hydrogen refueling station considered in this study, it was found that adjusting the contour radius is an appropriate design method to improve the compression performance and structural safety.

수소압축기 내장 충전탱크용 벨로우즈의 형상 파라미터 변화에 따른 구조 성능 고찰 (Study on Structural Performance by Shape Parameter Variation of Bellows for the Hydrogen Compressor-embedded Refueling Tank)

  • 박우창;정민석;송창용
    • 한국수소및신에너지학회논문집
    • /
    • 제35권1호
    • /
    • pp.75-82
    • /
    • 2024
  • In this study, design parameter exploration based on finite element analysis was performed to find the optimal shape of bellows, the key component of compressor-embedded refueling tank for a newly developed hydrogen refueling station capable of high-pressure charging above 900 bar. In the design parametric study, the design variables took into account the bellows shapes such as contour radius and span spacing, and the response factors were set to the maximum stress and the gap in the contact direction. In the shape design of the compressor bellows for hydrogen refueling station considered in this study, it was found that adjusting the contour span is an appropriate design method to improve the compression performance and structural safety. From the selection of optimal design, the maximum stress was reduced to 49% compared to the initial design without exceeding the material yield stress.

수소 생산 공정 개선을 위한 엑서지 분석과 열 교환망 합성: 분산형 수소 충전소에 대한 실용적 적용 (Exergy Analysis and Heat Exchanger Network Synthesis for Improvement of a Hydrogen Production Process: Practical Application to On-Site Hydrogen Refueling Stations)

  • 윤승관;조형태;김명준;이재원;김정환
    • 한국수소및신에너지학회논문집
    • /
    • 제33권5호
    • /
    • pp.515-524
    • /
    • 2022
  • In this study, the on-site hydrogen production process for refueling stations that were not energy-optimized was improved through exergy analysis and heat exchange network synthesis. Furthermore, the process was scaled up from 30 Nm3/h to 150 Nm3/h to improve hydrogen production capacity. Exergy analysis results show that exergy destruction in the SMR reactor and the heat exchanger accounts for 58.1 and 19.8%, respectively. Thus, the process is improved by modifying the heat exchange network to reduce the exergy loss in these units. As a result of the process simulation analysis, thermal and exergy efficiency is improved from 75.7 to 78.6% and 68.1 to 70.4%, respectively. In conclusion, it is expected to improve the process efficiency when installing on-site hydrogen refueling stations.

재생에너지 기반 청정 수소 운송 에너지 시스템 모사 연구 (A Simulation Study of Renewable Power based Green Hydrogen Mobility Energy Supply Chain Systems)

  • 이준헌;류준형
    • Korean Chemical Engineering Research
    • /
    • 제60권1호
    • /
    • pp.34-50
    • /
    • 2022
  • 파리 기후 협약 이후 온실 가스 감축은 전세계적으로 가장 중요한 문제이다. 특히 상당한 온실 가스를 배출하는 교통 운송 부문의 화석 연료 감축이 시급하다. 본 논문에서는 이에 대한 대안으로 재생에너지원에서 생산된 전기 에너지로 수소를 생산하여 수소 자동차에 연료로 공급하는 그린 모빌리티 에너지 시스템의 경제성을 검토하였다. 시스템 설계에 필요한 재생에너지 발전, 수전해 통한 수소 생산, 수소 저장과 충전소 등 여러가지 결정사항들에 대해 9 가지 시나리오를 구성하여 그에 대한 최적 설계 및 운영 비용을 분석하였다. 본 연구에서 얻어진 경험은 현실적 수소 에너지 시스템을 구축하는데 활용될 수 있을 것이다.

수소전기차용 700 bar 수소충전노즐의 노즐형상을 고려한 최적설계에 관한 연구 (Study on the Optimal Design of the Nozzle Shape of the 700 bar Hydrogen Refueling Nozzle for Hydrogen Electric Vehicles)

  • 백진욱;곽기명;김남용;조용민;류성기
    • 한국기계가공학회지
    • /
    • 제21권7호
    • /
    • pp.28-33
    • /
    • 2022
  • In this study, we analyze the flow characteristics according to the internal shape of a 700bar hydrogen charging gun for hydrogen electric vehicles. When charging hydrogen, it receives a high-pressure charging pressure. At this time, we analyze the flow characteristics according to the shape of the nozzle and find the shape of the nozzle that minimizes energy loss. Ultimately, the optimal design of the nozzle was obtained by comparing the pressure difference between the inlet pressure and outlet pressure under a fixed mass flow condition.

시내버스용 HCNG 고압가스 충전소의 폭발 위험성 해석 (Risk Assessment of High Pressure HCNG Refueling Station Explosion by Numerical Simulation)

  • 강승규;김영구;최슬기;권정락
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.113-113
    • /
    • 2014
  • This study has been conducted for evaluation of qualitative/quantitative risk of HCNG filling station. In case of fire explosion occurred because of hydrogen, CNG, and HCNG leaking on same conditions, maximum overpressure was measured as 30kPa for hydrogen, 3.5kPa for HCNG, and 0.4kPa for CNG. The overpressure of HCNG was measured 7.75 times higher than that of CNG, but it was only 11.7% compared with hydrogen. When the explosion was occurred, in case of hydrogen, the measured influential distance of overpressure was 59m and radiant heat was 75m. In case of CNG, influential distance of overpressure was 89m and radiant heat was 144m would be estimated. In case of 30% HCNG that was blended with hydrogen and CNG, influential distance of overpressure was 81m and radiant heat was 130m were measured. As the explosion occurred with the same sized container that had 350bar for hydrogen and 250bar of CNG and HCNG, the damage distance that explosive overpressure and radiant heat influenced CNG was seen as the highest. HCNG that was placed between CNG and hydrogen tended to be seen as more similar with CNG.

  • PDF

수소충전소 폭발위험장소 완화를 위한 확산차단벽 최적화 설계 (Optimization of Designing Barrier to Mitigate Hazardous Area in Hydrogen Refueling Stations)

  • 안승효;오세현;김은희;이준서;마병철
    • 한국수소및신에너지학회논문집
    • /
    • 제34권6호
    • /
    • pp.734-740
    • /
    • 2023
  • Hydrogen emphasis on safety management due to its high potential for accidents from wide explosive limits and low ignition energy. To prevent accidents, appropriate explosion-proof electrical equipment with installed to safe management of ignition sources. However, designing all facilities with explosion-proof structures can significantly increase costs and impose limitations. In this study, we optimize the barrier to effectively control the initial momentum in case of hydrogen release and form the control room as a non-hazardous area. We employed response surface method (RSM), the barrier distance, width and height of the barrier were set as variables. The Box-Behnken design method the selection of 15 cases, and FLACS assessed the presence of hazardous area. Analysis of variance (ANOVA) analysis resulting in an optimized barrier area. Through this methodology, the workplace can optimize the barrier according to the actual workplace conditions and classify reasonable hazardous area, which is believed to secure safety in hydrogen facilities and minimize economic burden.