• Title/Summary/Keyword: Hydrogen refueling protocol

Search Result 5, Processing Time 0.021 seconds

Hydrogen Refueling Stations Improving Safety and Economic Feasibility (안전성과 경제성이 개선된 수소충전소)

  • YunSil Huh;DongHoon Lee;Yongjin Chung;Yongchai Kwon
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.611-618
    • /
    • 2023
  • The purpose of the refueling protocol and the contents of SAE J2601, which is used as the basis for hydrogen vehicles refueling around the world, were investigated, and research contents related to domestic protocols were also investigated. In addition, the components of the hydrogen refueling performance evaluation device developed in Korea and the method for evaluating the performance and safety of hydrogen refueling stations were reviewed. And, the result were analyzed by applying it to the hydrogen refueling stations currently operating in Korea. In addition, an economic feasibility analysis was conducted using data collected from domestic hydrogen refueling stations. In order to secure the safety and economy of a hydrogen refueling station, the protocol must be satisfied, and in order to satisfy the protocol, it is necessary to evaluate whether the refueling temperature, refueling pressure, and refueling flow are controlled within a safe range.

Comparison of WiFi Protocols for Safety Communication Between Hydrogen Refueling Station and Fuel Cell Electric Vehicle (수소충전소와 수소전기차간의 안전통신을 위한 WiFi 프로토콜 비교)

  • Ha-Jin Hwang;Dong-Geon So;Do-Ho Cha;Hye-Jin Chae;Seo-Hee Jung;Sung-Ho Hwang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.81-87
    • /
    • 2023
  • SAE J2601 and SAE J2799, the communication protocols between a hydrogen refueling station and a fuel cell electric vehicle, only cover hydrogen charging. In this paper, we measure the hydrogen detection, current, and voltage of a fuel cell electric vehicle and transmit the sensor data to the hydrogen refueling station by changing the WiFi protocol. A small-scale laboratory model was built using Raspberry Pi for sensing, controlling, and transmitting sensor data of a fuel cell electric vehicle. The sensor data was stored in the database of the hydrogen refueling station, and a dashboard was configured using Grafana to analyze the stored data. When hydrogen is detected, the dispenser valve of the hydrogen refueling station is locked. Then, we measured the average transmission delay according to the WiFi protocol. The results showed that IEEE 802.11a is the most suitable WiFi protocol for transmitting sensor data between the hydrogen refueling station and the fuel cell electric vehicle.

Evaluation of Influential Factors of Hydrogen Fueling Protocol by Modeling and Simulation (모델링 및 시뮬레이션을 통한 수소충전 프로토콜 영향인자 평가)

  • CHAE, CHUNGKEUN;KANG, SUYOUN;KIM, HANNA;CHAE, SEUNGBEEN;KIM, YONGGYU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.513-522
    • /
    • 2019
  • It is not easy to refuel quickly and safely with 70 MPa hydrogen. This is because the temperature in the vehicle tank rises sharply due to Joule-Thomson effect, etc. Thus protocols such as SAE J2601 in the United States and JPEC-S 0003 in Japan were established. However, they have the problem of over-complexity and lack of versatility by setting the preconditions for hot and cold cases and introducing a number of look-up tables. This study was conducted with the ultimate goal of developing new protocols based on complete real-time communication. Thermodynamic models were made and programs were developed for hydrogen refueling simulations. Simulation results confirmed that there are five parameters in the influencing factors of the hydrogen refueling protocol.

Risk Assessment for Performance Evaluation System of Hydrogen Refueling Station (수소충전소 성능평가 장비 안전성 평가 연구)

  • KANG, SEUNGKYU;LEE, DONGHOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.3
    • /
    • pp.232-239
    • /
    • 2022
  • This study performed qualitative and quantitative risk assessment of equipment for evaluating the protocol of hydrogen refueling stations and suggested measures to improve safety. Hazard and operability study was performed for qualitative risk assessment, and Hy-KoRAM was used for quantitative risk assessment. Through a qualitative risk assessment, additional ventilation devices were installed, simultaneous venting of the storage container was prohibited, and the number of repeated refilling of the evaluation equipment was identified to manage the number of fillings of the container. Through quantitative risk assessment, the area around the device was set as a restricted area when evaluating the station, and measures were suggested to reduce the frequency of accidents.

A Study on Safety Impact Assessment of a Multiple Hydrogen Refueling Station (다차종 동시 충전을 위한 수소 스테이션의 안전 영향 평가 연구)

  • Boo-Seung Kim;Kyu-Jin Han;Seung-Taek Hong;Youngbo Choi
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.85-99
    • /
    • 2024
  • As the proliferation of hydrogen electric vehicles accelerates, there is observed diversification in hydrogen refueling station models. This diversification raises safety concerns for different types of stations. This study conducted a quantitative risk assessment of a multi-vehicle hydrogen station, capable of simultaneously refueling cars, buses, and trucks. Utilizing Gexcon's Effects&Riskcurves Software, scenarios of fire and explosion due to hydrogen leaks were assessed. The study calculated the impact distances from radiative heat and explosion overpressure, and measured risks to nearby buildings and populations. The largest impact distance was from fires and explosions at dispensers and high-pressure storage units. High-pressure storage contributes most significantly to personal and societal risk. The study suggests that conservative safety distances and proper protective measures for these facilities can minimize human and material damage in the event of a hydrogen leak.