• 제목/요약/키워드: Hydrogen pathway

검색결과 141건 처리시간 0.019초

Protective Effects of Ursolic Acid on Osteoblastic Differentiation via Activation of IER3/Nrf2

  • Lee, Sang-im
    • 치위생과학회지
    • /
    • 제19권3호
    • /
    • pp.198-204
    • /
    • 2019
  • Background: Oxidative stress is a known to be associated with in the pathogenesis of many inflammatory diseases, including periodontitis. Ursolic acid is a pentacyclic triterpenoid with has antimicrobial, antioxidative, and anticancer properties. However, the role of ursolic acid in the regulating of osteogenesis remains undetermined. This study was aimed to elucidate the crucial osteogenic effects of ursolic acid and its ability to inhibit oxidative stress by targeting the immediate early response 3 (IER3)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Methods: Cell proliferation was determined using water-soluble tetrazolium salt assay, cell differentiation was evaluated by alkaline phosphatase (ALP) activity, and formation of calcium nodules was detected using alizarin red S stain. Generation of reactive oxygen species (ROS) was determined using by DCFH-DA fluorescence dye in hydrogen peroxide ($H_2O_2$)-treated MG-63 cells. Expression levels of IER3, Nrf2, and heme oxygenase-1 (HO-1) were analyzed using western blot analysis. Results: Our results showed that ursolic acid up-regulated the proliferation of osteoblasts without any cytotoxic effects, and promoted ALP activity and mineralization. $H_2O_2$-induced ROS generation was found to be significantly inhibited on treatment with ursolic acid. Furthermore, in $H_2O_2$-treated cells, the expression of the early response genes: IER3, Nrf2, and Nrf2-related phase II enzyme (HO-1) was enhanced in the presence of ursolic acid. Conclusion: The key findings of the present study elucidate the protective effects of ursolic acid against oxidative stress conditions in osteoblasts via the IER3/Nrf2 pathway. Thus, ursolic acid may be developed as a preventative and therapeutic agent for mineral homeostasis and inflammatory diseases caused due to oxidative injury.

Protective Effects of Changbudodam-tang on Cell Death Signals on the Bone Marrow-Derived Human Mesenchymal Stem Cells via Regulation of MKK7/JNK/c-Jun Signaling Pathway

  • Hee-Jae Yoon;Si-Yoon Cho;Hyeong-Geug Kim;Ji-Yeon Lee
    • 대한약침학회지
    • /
    • 제27권2호
    • /
    • pp.131-141
    • /
    • 2024
  • Objectives: Polycystic ovary syndrome (PCOS) is one of the most common disorders and it shows up to 20% prevalence in reproductive-aged women populations, but no cures are available to date. We aimed to investigate the protective effects of Changbudodam-tang (CBD) on cell death signaling pathways, inflammation, and oxidative stress observed in Bone-Marrow derived human mesenchymal stem cell (BM-hMSC) by means of PCOS therapeutics in the future. Methods: BM-hMSCs were applied with cell deaths and injuries. Apoptosis and pyroptosis signals were quenched with their related signaling pathways using quantitative PCR, Western blot, and fluorescence image analysis. Results: Our data clearly displayed hydrogen peroxide- and nigericin-treated cell death signaling pathways via regulations of mitochondrial integrity and interleukin (IL)-1β at the cellular levels (p < 0.01 or 0.001). We further observed that pre-treatment with CBD showed protective effects against oxidative stress by enhancement of antioxidant components at the cellular level, with respect to both protein and mRNA expression levels (p < 0.05, 0.01 or 0.001). The mechanisms of CBD were examined by Western blot analysis, and it showed anti-cell death, anti-inflammatory, and antioxidant effects via normalizations of the Jun N-terminal kinase/mitogen-activated protein kinase kinase 7/c-Jun signaling pathways. Conclusion: This study confirmed the pharmacological properties of CBD by regulation of cellular oxidation and the inflammation-provoked cell death condition of BM-hMSCs, which is mediated by the MKK7/JNK/c-Jun signaling pathway.

Effect of Quercetin in the UV-Irradiated Human Keratinocyte HaCaT Cells and A Model of Its Binding To p38 MAPK

  • Jnawali, Hum Nath;Lee, Eunjung;Shin, Areum;Park, Young Guen;Kim, Yangmee
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권9호
    • /
    • pp.2787-2790
    • /
    • 2014
  • Quercetin is a major dietary flavonoid found in onions, apples, tea, and red wine, and potentially has beneficial effects on disease prevention. We carried out this study to investigate the effect of quercetin on UVB-induced matrix metalloproteinase-1 (MMP-1) expression in human keratinocyte HaCaT cells and to further understand the mechanisms of its action. The anti-inflammatory activity of quercetin was investigated and quercetin significantly suppressed the NO production in LPS-stimulated RAW264.7 mouse macrophages. Post treatment of quercetin decreased UV irradiation-induced phosphorylation of JNK, p38 MAPK, and ERK by 91%, 21%, and 17%, respectively. MMP-1 is mainly responsible for the degradation of dermal collagen during the aging process of human skin and quercetin suppressed the UVB-induced MMP-1 by 94%. Binding studies revealed that quercetin binds to p38 with high binding affinity ($1.85{\times}10^6M^{-1}$). The binding model showed that the 4'-hydroxy groups of the B-ring of quercetin participated in hydrogen bonding interactions with the side chains of Lys53, Glu71, and Asp168 and the 5-hydroxy group of the A-ring formed a hydrogen bond with the backbone amide of Met109. The major finding of this study shows that quercetin inhibits phosphorylation of JNK, p38 MAPK, and ERK pathway leading to the prevention of MMP-1 expression in human keratinocyte HaCaT cells. Therefore, our findings suggested the potentials of quercetin as a skin anti-photoaging agent.

Acer okamotoanum Inhibit the Hydrogen Peroxide-Induced Oxidative Stress in C6 Glial Cells

  • Choi, Soo Yeon;Kim, Ji Hyun;Quilantang, Norman G.;Lee, Sanghyun;Cho, Eun Ju
    • Natural Product Sciences
    • /
    • 제24권3호
    • /
    • pp.148-154
    • /
    • 2018
  • Chronic oxidative stress due to the accumulation of reactive oxygen species (ROS) in neuronal cells ultimately leads to neurodegenerative diseases. The use of natural therapies for the prevention of ROS-induced cell damage and for the treatment of neurodegenerative disorders has shown promising results. In this study, we evaluated the neuroprotective effects of the ethyl acetate (EtOAc) fraction of A. okamotoanum against the hydrogen peroxide ($H_2O_2$)-induced oxidative stress in C6 glial cells. Results show that cell viability was decreased in cells incubated with $H_2O_2$, whereas the addition of EtOAc fraction treatments in such cells significantly increased viability. The EtOAc fraction showed the highest inhibitory activity against ROS production and it also decreased the expressions of inflammatory proteins including cyclooxygenase-2, inducible nitric oxide synthase and interleukin-$1{\beta}$. Furthermore, the EtOAc fraction inhibited apoptosis by regulating the protein expressions cleaved caspase -9, -3, poly ADP ribose polymerase, Bax and Bcl-2. Therefore, these results show that the EtOAc fraction of A. Okamotoanum exhibits neuroprotective effects against $H_2O_2$ induced oxidative damage by regulating the inflammatory reaction and apoptotic pathway.

자동차 연료로서 수소의 전과정 환경성/경제성 분석 (Environmental and economic life cycle analysis of hydrogen as Transportation fuels)

  • 이지용;차경훈;유무상;이수연;허탁;임태원
    • 신재생에너지
    • /
    • 제3권2호
    • /
    • pp.31-39
    • /
    • 2007
  • 화석연료의 사용으로 인한 자원고갈과 지구온난화 영향 그리고 에너지 안보문제의 해결을 위해 세계 각국들은 대체에너지 개발에 많은 노력을 기울이고 있다. 그 중 수소는 다양한 경로를 통해 생산 가능하고, 수송연료로 사용 시, 유해 물질이 거의 배출되지 않는다는 장점 때문에 가장 주목받는 대체 에너지원이다. 현재는 수소생산 기술개발을 통해 상업화시기를 앞당기려고 하는 수소에너지 시대의 진입시점이라 할 수 있다. 그러나 수소는 생산경로에 따라 다양한 환경성 및 경제성 결과를 도출 할 수 있기 때문에 다양한 평가가 요구된다. 본 연구에서는 국내 수소생산 방식으로 개발/상용화되어있는 Natural Gas Steam Reforming (NGSR), Naphtha Steam Reforming (Naphtha SR), Water Electrolysis (WE)에 대하여, Life Cycle Assessment (LCA)와 Life Cycle Costing Analysis (LCCA) 방법을 사용하여, 수소경로 전반에 대한 즉, 원료채취부터 자동차로 주행하였을 때까지의 각 대상 수소경로의 환경성과 경제성을 평가하였다. LCA와 LCCA 결과는 Naphtha SR과 NGSR 수소경로에서 지구온난화와 화석자원 소모 부문 모두 기존연료 (가솔린, 디젤)와 비교해서 개선효과가 뚜렷하게 나타났으나, WE 수소경로는 오히려 환경부하가 증가되는 것으로 나타났다. 또한 경제성 측면에서는, 수소 판매 시 가솔린과 동일한 연료세율을 부과하더라도 수소가 가솔린에 비해 가격경쟁력을 확보하게 되는데, 이는 주행 시 수소자동차의 연비가 기존 차량에 비해 월등히 좋기 때문에 연료비용의 이점 때문이다. 만약, 수소에 연료세를 부과하지 않는 다면, Naphtha SR로 생산하여 유통한 수소가 수송연료로서 가장 뛰어난 비용효율성을 갖는 것으로 나타났다.

  • PDF

C2C12 근아세포에서 산자나무 유래 Isorhamnetin의 산화적 스트레스에 의한 Apoptosis 유발 억제 효과 (Protective Effects of Isorhamnetin against Hydrogen Peroxide-Induced Apoptosis in C2C12 Murine Myoblasts)

  • 최영현
    • 한방비만학회지
    • /
    • 제15권2호
    • /
    • pp.93-103
    • /
    • 2015
  • Objectives: It was investigated the cytoprotective efficacies of isorhamnetin, a flavonoid originally derived from Hippophae rhamnoides L., against oxidative stress-induced apoptosis in C2C12 myoblasts. Methods: The effects of isorhamnetin on cell growth, apoptosis and reactive oxygen species (ROS) generation were evaluated by trypan blue dye exclusion assay, 4',6-diamidino-2-phenylindole staining and flow cytometry. The levels of apoptosis-regulatory and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway-related proteins, and caspase activities (caspase-3 and -9) were determined by Western blot analysis and colorimetric assay, respectively. Results: Our results revealed that treatment with isorhamnetin prior to hydrogen peroxide ($H_2O_2$) exposure significantly increased the C2C12 cell viability and, indicating that the exposure of C2C12 cells to isorhamnetin conferred a protective effect against oxidative stress. Isorhamnetin also effectively attenuated $H_2O_2$-induced apoptosis and ROS generation, which was associated with the restoration of the upregulation of Bax and downregulation of Bcl-2 induced by $H_2O_2$. In addition, $H_2O_2$ enhanced the activation of caspase-9 and -3, and degradation of poly (ADP-ribose)-polymerase, a typical substrate protein of activated caspase-3; however, these events were almost totally reversed by pretreatment with isorhamnetin. Moreover, isorhamnetin increased the levels of heme oxygenase-1, a potent antioxidant enzyme, associated with the induction of Nrf2. Conclusions: Our data indicated that isorhamnetin may potentially serve as an agent for the treatment and prevention of muscle disorders caused by oxidative stress.

마치현 70% 에탄올 추출물의 Heme Oxygenase-1 발현을 통한 산화적 스트레스에 대한 사람각질형성세포 보호 효과 (The Cytoprotective Action of Portulaca oleracea 70% EtOH Extracts via the Heme Oxygenase-1 on Hydrogen Peroxide-induced Oxidative Stress in Human Keratinocyte HaCaT Cells)

  • 서승희;정길생
    • 생약학회지
    • /
    • 제46권2호
    • /
    • pp.116-122
    • /
    • 2015
  • Keratinocytes are first barrier against outer challenges on skin. However, it is still largely unknown about effective protectors against ultraviolet B (UVB), and oxidative stress in human keratinocyte, HaCaT cells. Inducible heme oxygenase (HO)-1 acts against oxidants that are thought to play a role in the pathogenesis of skin disorders. Therefore, the purpose of this study was to evaluate the effect of Portulaca oleracea 70% EtOH extracts against hydrogen peroxide (H2O2)-induced oxidative stress in human keratinocytes, HaCaT cells. P. oleracea 70% EtOH extracts showed the potent protective effects on H2O2-induced toxicity by induced the expression of HO-1 in human keratinocyte, HaCaT cells. Furthermore, P. oleracea 70 % EtOH extracts caused the nuclear accumulation of nuclear factor E2-related factor 2 (Nrf2) in human keratinocytes, HaCaT cells. In addition, we found that treatment with c-Jun N-terminal kinase (JNK) inhibitor (SP600125) reduced P. oleracea 70% EtOH extracts-induced HO-1 expression, and JNK inhibitor (SP600125) also inhibited protective effects by P. oleracea 70% EtOH extracts. Therefore, these results suggest that P. oleracea 70 % EtOH extracts increases cellular resistance to H2O2-induced oxidative injury in human keratinocyte, HaCaT cells, presumably through JNK pathway-Nrf2-dependent HO-1 expression.

A Complete, Reductive Depolymerization of Concentrated Sulfuric Acid Hydrolysis Lignin into a High Calorific Bio-oil using Supercritical Ethanol

  • Riaz, Asim;Kim, Jaehoon
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권3호
    • /
    • pp.447-452
    • /
    • 2016
  • It is imperative to develop an effective pathway to depolymerize lignin into liquid fuel that can be used as a bioheavy oil. Lignin can be converted into liquid products either by a solvent-free thermal cracking in the absence air, or thermo-chemical degradation in the presence of suitable solvents and chemicals. Here we show that the solvent-assisted liquefaction has produced promising results in the presence of metal-based catalysts. The supercritical ethanol is an efficient liquefaction solvent, which not only provides better solubility to lignin, but also scavenges the intermediate species. The concentrated sulfuric acid hydrolysis lignin (CSAHL) was completely liquefied in the presence of solid catalysts (Ni, Pd and Ru) with no char formation. The effective deoxy-liquefaction nature associated with scEtOH with aid hydrodeoxygenation catalysts, resulted in significant reduction in oxygen-to-carbon (O/C) molar ratio up to 61%. The decrease in oxygen content and increase in carbon and hydrogen contents increased the calorific value bio-oil, with higher heating value (HHV) of $34.6MJ{\cdot}Kg^{-1}$. The overall process is energetically efficient with 129.8% energy recovery (ER) and 70.8% energy efficiency (EE). The GC-TOF/MS analysis of bio-oil shows that the bio-oil mainly consists of monomeric species such as phenols, esters, furans, alcohols, and traces of aliphatic hydrocarbons. The bio-oil produced has better flow properties, low molecular weight, and high aromaticity.

1D and 2D Cobalt(II) Coordination Polymers, Co(ox)(en): Synthesis, Structures and Magnetic Properties

  • Kang, Jaeun;Lee, Yumi;Kim, Seungjoo;Yun, Hoseop;Do, Junghwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권11호
    • /
    • pp.3244-3248
    • /
    • 2014
  • Two ethylenediamine cobalt(II) oxalate complexes Co(ox)(en), 1 and $Co(ox)(en){\cdot}2H_2O$, 2 have been hydrothermally synthesized and characterized by single crystal X-ray diffraction, IR spectrum, TG analysis, and magnetic measurements. In 1, Co atoms are coordinated by two bis-bidentate oxalate ions in transconfiguration to form Co(ox) chains, which are further bridged by ethylenediamine molecules to produce 2D grid layers, Co(ox)(en). In 2, Co atoms are coordinated by bridging oxalate ions in cis-configuration to form Co(ox) chains, and the additional chelation of ethylenediamine to Co atoms completes 1D zigzag chain, Co(en)(ox). Two lattice water molecules stabilize the chains through hydrogen bonding. Magnetic susceptibility measurements indicate that both complexes exhibit weak antiferromagnetic coupling between cobalt(II) ions with the susceptibility maxima at 23 K for 1 and 20 K for 2, respectively. In 1 and 2, the oxalate ligands afford a much shorter and more effective pathway for the magnetic interaction between cobalt ions compared to the ethylenediamine ligands, so the magnetic behaviors of both complexes could be well described with 1D infinite magnetic chain model.

Kinetics and Mechanism of the Anilinolysis of 1,2-Phenylene Phosphorochloridate in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권9호
    • /
    • pp.3355-3360
    • /
    • 2011
  • The nucleophilic substitution reactions of 1,2-phenylene phosphorochloridate (1) with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at $-15.0^{\circ}C$. The studied substrate of 1,2-phenylene phosphorochloridate is cyclic five-membered ring of phosphorus ester, and the anilinolysis rate of 1 is much faster than its acyclic analogue (4: ethyl phenyl chlorophosphate) because of extremely small magnitude of the entropy of activation of 1 compared to 4. The Hammett and Bronsted plots exhibit biphasic concave upwards for substituent X variations in the nucleophiles with a break point at X = 3-Me. The values of deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) change from secondary inverse ($k_H/k_D$ < 1) with the strongly basic anilines to primary normal ($k_H/k_D$ > 1) with the weakly basic anilines. The secondary inverse with the strongly basic anilines and primary normal DKIEs with the weakly basic anilines are rationalized by the transition state (TS) variation from a predominant backside attack to a predominant frontside attack, in which the reaction mechanism is a concerted $S_N2$ pathway. The primary normal DKIEs are substantiated by a hydrogen bonded, four-center-type TS.