DOI QR코드

DOI QR Code

Acer okamotoanum Inhibit the Hydrogen Peroxide-Induced Oxidative Stress in C6 Glial Cells

  • Choi, Soo Yeon (Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University) ;
  • Kim, Ji Hyun (Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University) ;
  • Quilantang, Norman G. (Department of Integrative Plant Science, Chung-Ang University) ;
  • Lee, Sanghyun (Department of Integrative Plant Science, Chung-Ang University) ;
  • Cho, Eun Ju (Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University)
  • Received : 2017.11.01
  • Accepted : 2018.01.08
  • Published : 2018.09.30

Abstract

Chronic oxidative stress due to the accumulation of reactive oxygen species (ROS) in neuronal cells ultimately leads to neurodegenerative diseases. The use of natural therapies for the prevention of ROS-induced cell damage and for the treatment of neurodegenerative disorders has shown promising results. In this study, we evaluated the neuroprotective effects of the ethyl acetate (EtOAc) fraction of A. okamotoanum against the hydrogen peroxide ($H_2O_2$)-induced oxidative stress in C6 glial cells. Results show that cell viability was decreased in cells incubated with $H_2O_2$, whereas the addition of EtOAc fraction treatments in such cells significantly increased viability. The EtOAc fraction showed the highest inhibitory activity against ROS production and it also decreased the expressions of inflammatory proteins including cyclooxygenase-2, inducible nitric oxide synthase and interleukin-$1{\beta}$. Furthermore, the EtOAc fraction inhibited apoptosis by regulating the protein expressions cleaved caspase -9, -3, poly ADP ribose polymerase, Bax and Bcl-2. Therefore, these results show that the EtOAc fraction of A. Okamotoanum exhibits neuroprotective effects against $H_2O_2$ induced oxidative damage by regulating the inflammatory reaction and apoptotic pathway.

Keywords

References

  1. Heo, S. J.; Jeon, Y. J. J. Appl. Phycol. 2008, 20, 1087-1095. https://doi.org/10.1007/s10811-008-9320-x
  2. Ko, S. C.; Kim, D.; Jeon, Y. J. Food Chem. Toxicol. 2012, 50, 2294- 2302. https://doi.org/10.1016/j.fct.2012.04.022
  3. Bhat, A. H.; Dar, K. B.; Anees, S.; Zargar, M. A.; Masood, A.; Sofi, M. A.; Ganie, S. A. Biomed. Pharmacother. 2015, 74, 101-110. https://doi.org/10.1016/j.biopha.2015.07.025
  4. Qin, B.; Panickar, K. S.; Anderson, R. A. Life Sci. 2014, 102, 72-79. https://doi.org/10.1016/j.lfs.2014.02.038
  5. Kim, H. J.; Woo, E. R.; Shin, C. G.; Park, H. J. Nat. Prod. 1998, 61, 145-148. https://doi.org/10.1021/np970171q
  6. Jin, W.; Thuong, P. T.; Su, N. D.; Min, B. S.; Son, K. H.; Chang, H. W.; Kim, H. P.; Kang, S. S.; Sok, D. E.; Bae, K. Arch. Pharm. Res. 2007, 30, 275-281. https://doi.org/10.1007/BF02977606
  7. Jeong, M. H.; Ha, J. H.; Oh, S. H.; Kim, S. S.; Lee, H. J.; Kang, H. Y.; Lee, H. Y. Korean J. Med. Crop Sci. 2009, 17, 407-411.
  8. Jeong, M. H.; Kim, S. S.; Kim, J. S.; Lee, H. J.; Choi, G. P.; Lee, H. Y. J. Korean For. Soc. 2010, 99, 470-478.
  9. Jin, L.; Han, J. G.; Ha, J. H.; Jeong, H. S.; Kwon, M. C.; Jeong, M. H.; Lee, H. J.; Kang, H. Y.; Choi, D. H.; Lee, H. Y. Korean J. Med. Crop Sci. 2008, 16, 427-433.
  10. Qadir, S. A.; Kim, C. H.; Kwon, M. C.; Lee, H. J.; Kang, H. Y.; Choi, D. H.; Lee, H. Y. Korean J. Med. Crop Sci. 2007, 15, 405-410.
  11. Choi, S. Y.; Kim, J. H.; Lee, J. M.; Lee, S. H.; Cho, E. J. J. Appl. Biol. Chem. 2017, 60, 141-147. https://doi.org/10.3839/jabc.2017.024
  12. Mosmann, T. J. Immunol. Methods. 1983, 65, 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  13. Ma, W. W.; Hou, C. C.; Zhou, X.; Yu, H. L.; Xi, Y. D.; Ding, J.; Zhao, X.; Xiao, R. Neurochem. Res. 2013, 38, 1315-1323. https://doi.org/10.1007/s11064-013-1019-y
  14. Park, J. H.; Kim. C. K.; Lee. S. B.; Lee. K. H.; Cho. S. W.; Ahn. J. Y. Sci. Rep. 2016, 6, 21857. https://doi.org/10.1038/srep21857
  15. Park, H. R.; Lee, H.; Park, H.; Jeon, J. W.; Cho, W. K.; Ma, J. Y. BMC Complement. Altern. Med. 2015, 15, 171-181. https://doi.org/10.1186/s12906-015-0679-3
  16. Kwon, S. H.; Hong, S. I.; Ma, S. X.; Lee, S. Y.; Jang, C. G. Food Chem. Toxicol. 2015, 80, 41-51. https://doi.org/10.1016/j.fct.2015.02.014
  17. Budzynska, B.; Boguszewska-Czubara, A.; Kruk-Slomka, M.; Skalicka-Wozniak, K.; Michalak, A.; Musik, I.; Biala, G. Psychopharmacology 2015, 232, 931-942. https://doi.org/10.1007/s00213-014-3728-6
  18. Barnham, K. J.; Masters, C. L.; Bush, A. I. Nat. Rev. Drug Discov. 2004, 3, 205-214. https://doi.org/10.1038/nrd1330
  19. Malek, R.; Borowicz, K. K.; Jargiello, M.; Czuczwar, S. J. Pharmacol. Rep. 2007, 59, 25-33.
  20. Janssen-Heininger, Y. M.; Poynter, M. E.; Baeuerle, P. A. Free Radic. Biol. Med. 2000, 28, 1317-1327. https://doi.org/10.1016/S0891-5849(00)00218-5
  21. Moneada, S.; Palmer. R. M.; Higgs. E. A. Pharmacol. Rev. 1991, 43, 109-142.
  22. Suh, N.; Honda, T.; Finlay, H. J.; Barchowsky, A.; Williams, C.; Benoit, N. E.; Xie, Q. W.; Nathan, C.; Gribble, G. W.; Sporn, M. B. Cancer Res. 1998, 58, 717-723.
  23. DuBois, R. N.; Radhika, A.; Reddy, B. S.; Entingh, A. J. Gastroenterology 1996, 110, 1259-1262. https://doi.org/10.1053/gast.1996.v110.pm8613017
  24. Ogura, M.; Takarada, T.; Nakamichi, N.; Kawagoe, H.; Sako, A.; Nakazato, R.; Yoneda, Y. Neurochem. Int. 2011, 58, 504-511. https://doi.org/10.1016/j.neuint.2011.01.007
  25. Quincozes-Santos, A.; Bobermin, L. D.; Latini, A.; Wajner, M.; Souza, D. O.; Gonçalves, C. A.; Gottfried, C. PLoS One. 2013, 8, e64372. https://doi.org/10.1371/journal.pone.0064372
  26. Pahl, H. L. Oncogene 1999, 18, 6853-6866. https://doi.org/10.1038/sj.onc.1203239
  27. Shi, X.; Dong, Z.; Huang, C.; Ma, W.; Liu, K.; Ye, J.; Chen, F.; Leonard, S. S.; Ding, M.; Castranova, V.; Vallyathan, V. Mol. Cell. Biochem. 1999, 194, 63-70. https://doi.org/10.1023/A:1006904904514
  28. Choi, S. Y.; Lee, J.; Lee, D. G.; Lee, S.; Cho, E. J. Appl. Biol. Chem. 2017, 60, 1-9.
  29. Alamdary, S. Z.; Khodagholi, F.; Shaerzadeh, F.; Ansari, N.; Sonboli, A.; Tusi, S. K. Cytotechnology 2012, 64, 403-419. https://doi.org/10.1007/s10616-011-9418-x
  30. Kitamura, Y.; Shimohama, S.; Kamoshima, W.; Ota, T.; Matsuoka, Y.; Nomura, Y.; Smith, M. A.; Perry, G.; Whitehouse, P. J.; Taniguchi, T. Brain Res. 1998, 780, 260-269. https://doi.org/10.1016/S0006-8993(97)01202-X
  31. Ly, J. D.; Grubb, D. R.; Lawen, A. Apoptosis 2003, 8, 115-128. https://doi.org/10.1023/A:1022945107762
  32. Kwon, S. H.; Kim, M. J.; Ma, S. X.; You, I. J.; Hwang, J. Y.; Oh, J. H.; Kim, S. Y.; Kim, H. C.; Lee, S. Y.; Jang, C. G. J. Ethnopharmacol. 2012, 142, 337-345. https://doi.org/10.1016/j.jep.2012.04.010

Cited by

  1. Neuroprotective Effects of Tetrahydrocurcumin against Glutamate-Induced Oxidative Stress in Hippocampal HT22 Cells vol.25, pp.1, 2020, https://doi.org/10.3390/molecules25010144
  2. Protective Effects of Active Compounds from Salviae miltiorrhizae Radix against Glutamate-Induced HT-22 Hippocampal Neuronal Cell Death vol.8, pp.8, 2018, https://doi.org/10.3390/pr8080914