Browse > Article
http://dx.doi.org/10.5012/bkcs.2011.32.9.3355

Kinetics and Mechanism of the Anilinolysis of 1,2-Phenylene Phosphorochloridate in Acetonitrile  

Barai, Hasi Rani (Department of Chemistry, Inha University)
Lee, Hai-Whang (Department of Chemistry, Inha University)
Publication Information
Abstract
The nucleophilic substitution reactions of 1,2-phenylene phosphorochloridate (1) with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at $-15.0^{\circ}C$. The studied substrate of 1,2-phenylene phosphorochloridate is cyclic five-membered ring of phosphorus ester, and the anilinolysis rate of 1 is much faster than its acyclic analogue (4: ethyl phenyl chlorophosphate) because of extremely small magnitude of the entropy of activation of 1 compared to 4. The Hammett and Bronsted plots exhibit biphasic concave upwards for substituent X variations in the nucleophiles with a break point at X = 3-Me. The values of deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) change from secondary inverse ($k_H/k_D$ < 1) with the strongly basic anilines to primary normal ($k_H/k_D$ > 1) with the weakly basic anilines. The secondary inverse with the strongly basic anilines and primary normal DKIEs with the weakly basic anilines are rationalized by the transition state (TS) variation from a predominant backside attack to a predominant frontside attack, in which the reaction mechanism is a concerted $S_N2$ pathway. The primary normal DKIEs are substantiated by a hydrogen bonded, four-center-type TS.
Keywords
Phosphoryl transfer reaction; Anilinolysis; 1,2-Phenylene phosphorochloridate; Biphasic concave upward free energy correlation; Deuterium kinetic isotope effect;
Citations & Related Records
Times Cited By KSCI : 19  (Citation Analysis)
Times Cited By Web Of Science : 15  (Related Records In Web of Science)
Times Cited By SCOPUS : 15
연도 인용수 순위
1 Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Phys. Org. Chem. 2009, 22, 425.   DOI   ScienceOn
2 Dey, N. K.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2009, 30, 975.   DOI   ScienceOn
3 Hoque, M. E. U.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2009, 7, 2919.   DOI   ScienceOn
4 Dey, N. K.; Lee, H. W. Bull. Korean Chem. Soc. 2010, 31, 1403.   DOI   ScienceOn
5 Dey, N. K.; Kim, C. K.; Lee, H. W. Org. Biomol. Chem. 2011, 9, 717.   DOI   ScienceOn
6 Barai, H. R.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 1939.   DOI   ScienceOn
7 Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 1997.   DOI   ScienceOn
8 Guha, A. K.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 12.   DOI   ScienceOn
9 Lee, H. W.; Guha, A. K.; Kim, C. K.; Lee, I. J. Org. Chem. 2002, 67, 2215.   DOI   ScienceOn
10 Adhikary, K. K.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 2003, 24, 1135.   DOI   ScienceOn
11 Hoque, M. E. U.; Dey, N. K.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 1797.   DOI   ScienceOn
12 Adhikary, K. K.; Lumbiny, B. J.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 851.   DOI   ScienceOn
13 Lumbiny, B. J.; Adhikary, K. K.; Lee, B. S.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 1769.   DOI   ScienceOn
14 Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, H. W. J. Phys. Org. Chem. 2010, 23, 1022.   DOI   ScienceOn
15 Guha, A. K.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1999, 765.
16 Lee, H. W.; Guha, A. K.; Lee, I. Int. J. Chem. Kinet. 2002, 34, 632.   DOI   ScienceOn
17 Hoque, M. E. U.; Dey, S.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Org. Chem. 2007, 72, 5493.   DOI   ScienceOn
18 Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 936.   DOI   ScienceOn
19 Dey, N. K.; Han, I. S.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 2003.   DOI   ScienceOn
20 Hoque, M. E. U.; Dey, N. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2007, 5, 3944.   DOI   ScienceOn
21 Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Phys. Org. Chem. 2008, 21, 544.   DOI   ScienceOn
22 Lumbiny, B. J.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 2065.   DOI   ScienceOn
23 Gronert, S.; Fajin, A. E.; Wong, L. J. Am. Chem. Soc. 2007, 129, 5330.   DOI   ScienceOn
24 Marlier, J. F. Acc. Chem. Res. 2001, 34, 283.   DOI   ScienceOn
25 Westaway, K. C. Adv. Phys. Org. Chem. 2006, 41, 217.
26 Villano, S. M.; Kato, S.; Bierbaum, V. M. J. Am. Chem. Soc. 2006, 128, 736.   DOI   ScienceOn
27 Poirier, R. A.; Youliang, W.; Westaway, K. C. J. Am. Chem. Soc. 1994, 116, 2526.   DOI   ScienceOn
28 Coetzee, J. F. Prog. Phys. Org. Chem. 1967, 4, 54.
29 Yamata, H.; Ando, T.; Nagase, S.; Hanamusa, M.; Morokuma, K. J. Org. Chem. 1984, 49, 631.   DOI
30 Xhao, X. G.; Tucker, S. C.; Truhlar, D. G. J. Am. Chem. Soc. 1991, 113, 826.   DOI
31 Spillane, W. J.; Hogan, G.; McGrath, P.; King, J.; Brack, C. J. Chem. Soc., Perkin Trans. 2 1996, 2099.
32 Oh, H. K.; Woo, S. Y.; Shin, C. H.; Park, Y. S.; Lee, I. J. Org. Chem. 1997, 62, 5780.   DOI   ScienceOn
33 Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165.   DOI
34 Perrin, C. I.; Engler, R. E. J. Phys. Chem. 1991, 95, 8431.   DOI
35 Perrin, C. I.; Ohta, B. K.; Kuperman, J. J. Am. Chem. Soc. 2003, 125, 15008.   DOI   ScienceOn
36 Perrin, C. I.; Ohta, B. K.; Kuperman, J.; Liberman, J.; Erdelyi, M. J. Am. Chem. Soc. 2005, 127, 9641.   DOI   ScienceOn
37 Streitwieser, A., Jr.; Heathcock, C. H.; Kosower, E. M. Introduction to Organic Chemistry, 4th ed.; Macmillan: New York, 1992; p 735.
38 Crumpler, T. B.; Yoh, J. H. Chemical Computations and Errors; John Wiley: New York, 1940; p 178.
39 Hehre, W. J.; Random, L.; Schleyer, P. V. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986; Chapter 4.
40 Lee, I. Chem. Soc. Rev. 1990, 19, 317.   DOI
41 Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57.
42 Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529.   DOI   ScienceOn
43 Lee, I.; Koh, H. J.; Lee, B. S.; Lee, H. W. J. Chem. Soc., Chem. Commun. 1990, 335.
44 Lee, I. Chem. Soc. Rev. 1995, 24, 223.   DOI
45 Dey, N. K.; Adhikary, K. K.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2010, 31, 3856.   DOI   ScienceOn
46 Dey, N. K.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 709.   DOI   ScienceOn
47 Adhikary, K. K.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 1945.   DOI   ScienceOn
48 Hoque, M. E. U.; Dey, S.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 1138.   DOI   ScienceOn
49 Guha, A. K.; Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 1375.   DOI   ScienceOn
50 Guha, A. K.; Kim, C. K.; Lee, H. W. J. Phys. Org. Chem. 2011, 24, 474.   DOI   ScienceOn
51 Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 2109.   DOI   ScienceOn
52 Adhikary, K. K.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 1625.   DOI   ScienceOn
53 Lee, I.; Kim, C. K.; Li, H. G.; Sohn, C. K.; Kim, C. K.; Lee, H. W.; Lee, B. S. J. Am. Chem. Soc. 2000, 122, 11162.   DOI   ScienceOn
54 Han, I. S.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 889.   DOI   ScienceOn
55 Westheimer, F. H. Acc. Chem. Res. 1968, 1, 70.   DOI
56 Gorenstein, D. G. Chem. Rev. 1987, 87, 1047.   DOI
57 Yang, J. C.; Gorenstein, D. G. Tetrahedron 1987, 43, 479.   DOI   ScienceOn
58 Ritchie, C. D. In Solute-Solvent Interactions, Coetzee, J. F., Ritchie, C. D. Eds., Marcel Dekker: New York, 1969; Chapter 4.