• Title/Summary/Keyword: Hydrogen ion implantation

Search Result 21, Processing Time 0.048 seconds

Hydrogen Ion Implantation Mechanism in GaAs-on-insulator Wafer Formation by Ion-cut Process

  • Woo, Hyung-Joo;Choi, Han-Woo;Kim, Joon-Kon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.2
    • /
    • pp.95-100
    • /
    • 2006
  • The GaAs-on-insulator (GOI) wafer fabrication technique has been developed by using ion-cut process, based on hydrogen ion implantation and wafer direct bonding techniques. The hydrogen ion implantation condition for the ion-cut process in GaAs and the associated implantation mechanism have been investigated in this paper. Depth distribution of hydrogen atoms and the corresponding lattice disorder in (100) GaAs wafers produced by 40 keV hydrogen ion implantation were studied by SIMS and RBS/channeling analysis, respectively. In addition, the formation of platelets in the as-implanted GaAs and their microscopic evolution with annealing in the damaged layer was also studied by cross-sectional TEM analysis. The influence of the ion fluence, the implantation temperature and subsequent annealing on blistering and/or flaking was studied, and the optimum conditions for achieving blistering/splitting only after post-implantation annealing were determined. It was found that the new optimum implant temperature window for the GaAs ion-cut lie in $120{\sim}160^{\circ}C$, which is markedly lower than the previously reported window probably due to the inaccuracy in temperature measurement in most of the other implanters.

Etch Rate of Oxide Grown on Silicon Implanted with Different Ion Implantation Conditions prior to Oxidation

  • Joung, Yang-Hee;Kang, Seong-Jun
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.2
    • /
    • pp.67-69
    • /
    • 2003
  • The experimental studies for the etch properties of the oxide grown on silicon substrate, which is in diluted hydrogen fluoride (HF) solution, are presented. Using different ion implantation dosages, dopants and energies, silicon substrate was implanted. The wet etching in diluted HF solution is used as a mean of wafer cleaning at various steps of VLSI processing. It is shown that the wet etch rate of oxide grown on various implanted silicon substrates is a strong function of ion implantation dopants, dosages and energies. This phenomenon has never been reported before. This paper shows that the difference of wet etch rate of oxide by ion implantation conditions is attributed to the kinds and volumes of dopants which was diffused out into $SiO_2$ from implanted silicon during thermal oxidation.

Influence of Trap Passivation by Hydrogen on the Electrical Properties of Polysilicon-Based MSM Photodetector

  • Lee, Jae-Sung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.6
    • /
    • pp.316-319
    • /
    • 2017
  • A new approach to improving the electrical characteristics and optical response of a polysilicon-based metal-semiconductor-metal (MSM) photodetector is proposed. To understand the cause of current restriction in the MSM photodetector, modified trap mechanisms are suggested, which include interfacial electron traps at the metal/polysilicon interface and silicon dangling bonds between silicon crystallite grains. Those traps were passivated using hydrogen ion implantation with subsequent post-annealing. Photodetectors that were ion-implanted under optima conditions exhibited improved photoconductivity and reduced dark current instability, implying that the hydrogen bonds in the polysilicon influence the simultaneous decreases in the density of dangling bonds at grain boundaries and the trapped positive charges at the contact interface.

Optical Properties of a Proton-implanted Nd:CNGG Planar Waveguide

  • Zhu, Qian-Lin;Lin, Ming-Fu;Chen, Jing-Yi;Wang, Zhong-Yue;Liu, Chun-Xiao
    • Current Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.172-176
    • /
    • 2019
  • The work reports on the fabrication of an optical planar waveguide in the Nd:CNGG crystal by the 0.4-MeV hydrogen ion implantation with a fluence of $8.0{\times}10^{16}ions/cm^2$. The nuclear energy loss of the implanted hydrogen ions was derived by using SRIM 2013 code. The microscope image of the proton-implanted Nd:CNGG crystal cross section was captured by a metallographic microscope. The transmittance spectra were recorded before and after the ion implantation. The light intensity distribution of the planar waveguide at 632.8 nm was experimentally measured to validate its effect on one dimension confinement. The investigation shows that the proton-implanted Nd:CNGG waveguide is a candidate for an optoelectronic integrated device.

The design and fabricationt for ion fraction measurement of plasma generator (플라즈마발생기의 이온분율 측정 장치 설계 및 제작)

  • Lee, Chan-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.368-368
    • /
    • 2008
  • Ion implantation has been widely developed during the past decades to become a standard industrial tool. To comply with the growing needs in ion implantation, innovative technology for the control of ion beam parameters is required. Beam current, beam profile, ion fractions are of great interest when uniformity of the implant is an issue. Especially, it is important to measure the spatial distribution of beam power and also the energy distribution of accelerated ions. This energy distribution is influenced by the proportion of mass for ion in the plasma generator(ion source) and by charge exchange and dissociation within the accelerator structure and also by possible collective effects in the neutralizer which may affect the energy and divergence of ions. Hydrogen atom has been the object of a good study to investigate the energy distribution. Hydrogen ion sources typically produce multi-momentum beams consisting of atomic ion ($H^+$) and molecular ion ($H_2^+$ and $H_3^+$). In the beam injector, the molecular ions pass through a charge-exchanges gas cell and break up into atomic with one-half (from $H_2^+$) or one-third (from $H_3^+$) according to their accelerated energy. Burrell et al. have observed the Doppler shifted lines from incident $H^+$, $H_2^+$, and $H_3^+$ using a Doppler shift spectroscopy. Several authors have measured the proportion of mass for hydrogen ion and deuterium using an ion source equipped with a magnetic dipole filter. We developed an ion implanter with 50-KeV and 20-mA ion source and 100-keV accelerator tube, aiming at commercial uses. In order to measure the proportion of mass for ions, we designed a filter system which can be used to measure the ion fraction in any type of ion source. The hydrogen and helium ion species compositions are used a filter system with the two magnets configurations.

  • PDF

RECENT DEVELOppMENTS IN STUDIES ON DIAMOND FILMS BY ppLASMA CVD FOR FUTURE ELECTRONIC DEVICES

  • Hiraki, Akio
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1993.02a
    • /
    • pp.6-6
    • /
    • 1993
  • With brief instroduction of fabrication methods of dia.ond fillls by plasma CVD, recent progress in diamond research mainly done in the author's laboratory at Osaka University is reviewed.especially on the following topics: "low temperature diallond fabrication", "ion implantation", "hydrogen plasma treatment of ion-implanted diaaond to remove ion-induced damage", "Oxygen diffusion into the bulk assisted by the hydrogen treatllent", and "hole-burning effect".ffect".

  • PDF

Effect of Hydrogen Radicals for Ion Implanted CVD Diamond Using Remote Hydrogen Plasma Treatment(RHPT)

  • Won, Jaihyung;Hatta, Akimitsu;Yagi, Hiromasa;Wang, Chunlei;Jiang, Nan;Jeon, Hyeongmin;Deguehi, Masahiro;Kitabatake, Makoto;Ito, Toshimichi;Sasaki, Takatomo;Hiraki, Akio
    • The Korean Journal of Ceramics
    • /
    • v.4 no.1
    • /
    • pp.15-19
    • /
    • 1998
  • Defects formation of Chemical Vapor Deposition (CVD) diamond on $^4He^{2+}$ irradiation and after remote hydrogen plasma treatment(RHPT) were investigated by cathodoluminescence(CL). As calculated in the TRIM simulation, the light elements of $^4He^{2-}$ can be penetrated into the diamond bulk structure at 3~4 $\mu\textrm{m}$ depth. The effects of the implantation region were observed when 5 keV~20 keV electron energy (insight 0.3~4.0$\mu\textrm{m}$) of CL measurement was irradiated to diamond at temperature 80 K. After the RHPT, rehybridization of irradiation damaged diamond was studied. The intensity of 5RL center(intrinsic defect of C) was diminished. The 2.16 eV center (N-V center) occurring usually by annealing could not be seen after RHPT. The diamond was rehybridized by hydrogen radicals without etching and thermal degradation by the RHPT.

  • PDF

Hydrogen and Alkali Ion Sensing Properties of Ion Implanted Silicon Nitride Thin Film

  • Park, Gu-Bum
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.231-236
    • /
    • 2008
  • B, P, and Cs ions were implanted with various parameters into silicon nitride layers prepared by LPCVD. In order to get the maximum impurity concentration at the silicon nitride surface, a high temperature oxide (HTO) buffer layers was deposited prior to the implantation. Alkali ion and pH sensing properties of the layers were investigated with an electrolyte-insulator-silicon (EIS) structure using high frequency capacitance-voltage (HF-CV) measurements. The ion sensing properties of implanted silicon nitrides were compared to those of as-deposited silicon nitride. Band Cs co-implanted silicon nitrides showed a pronounced difference in pH and alkali ion sensing properties compared to those of as-deposited silicon nitride. B or P implanted silicon nitrides in contrast showed similar ion sensitivities like those of as-deposited silicon nitride.

keV and MeV Ion Beam Modification of Polyimide Films

  • Lee, Yeonhee;Seunghee Han;Song, Jong-Han;Hyuneui Lim;Moojin Suh
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.170-170
    • /
    • 2000
  • Synthetic polymers such as polyimide, polycarbonate, and poly(methyl methacrylate) are long chain molecules which consist of carbon, hydrogen, and heteroatom linked together chemically. Recently, polymer surface can be modified by using a high energy ion beam process. High energy ions are introduced into polymer structure with high velocity and provide a high degree of chemical bonding between molecular chains. In high energy beam process the modified polymers have the highly crosslinked three-dimensionally connected rigid network structure and they showed significant improvements in electrical conductivity, in hardness and in resistance to wear and chemicals. Polyimide films (Kapton, types HN) with thickness of 50~100${\mu}{\textrm}{m}$ were used for investigations. They were treated with two different surface modification techniques: Plasma Source Ion Implantation (PSII) and conventional Ion Implantation. Polyimide films were implanted with different ion species such as Ar+, N+, C+, He+, and O+ with dose from 1 x 1015 to 1 x 1017 ions/cm2. Ion energy was varied from 10keV to 60keV for PSII experiment. Polyimide samples were also implanted with 1 MeV hydrogen, oxygen, nitrogen ions with a dose of 1x1015ions/cm2. This work provides the possibility for inducing conductivity in polyimide films by ion beam bombardment in the keloelectronvolt to megaelectronvolt energy range. The electrical properties of implanted polyimide were determined by four-point probe measurement. Depending on ion energy, doses, and ion type, the surface resistivity of the film is reduced by several orders of magnitude. Ion bombarded layers were characterized by Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS), XPS, and SEM.

  • PDF

Proton implantation mechanism involved in the fabrication of SOI wafer by ion-cut process (Ion-cut에 의한 SOI웨이퍼 제조에서의 양성자조사기구)

  • 우형주;최한우;김준곤;지영용
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • The SOI wafer fabrication technique has been developed by using ion-cut process, based on proton implantation and wafer bonding techniques. It has been shown by TRIM simulation that 65 keV proton implantation is required for the standard SOI wafer (200 nm SOI, 400 nm BOX) fabrication. In order to investigate the optimum proton dose and primary annealing condition for wafer splitting, the surface morphologic change has been observed such as blistering and flaking. As a result, effective dose is found to be in the 6∼$9\times10^{16}$ $H^{+}/\textrm{cm}^2$ range, and the annealing at $550^{\circ}C$ for 30 minutes is expected to be optimum for wafer splitting. The depth distribution of implanted hydrogen has been experimentally confirmed by ERD and SIMS measurements. The microstructure evolution in the damaged layer was also studied by X-TEM analysis.