• Title/Summary/Keyword: Hydrogen gas evolution

Search Result 68, Processing Time 0.028 seconds

Evolutional Transformations of Copper Nanoparticles to Copper Oxide Nanowires

  • Gang, Min-Gyu;Yun, Ho-Gyu;Kim, Yeong-Seok
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.18.2-18.2
    • /
    • 2011
  • We study and analyze here a novel and simple approach to produce copper oxide nanowires in a methanol as an alternative to chemical synthesis routs and VLS-growth method. First, copper oxide nanowires are grown from copper nanoparticles in methanol at $60^{\circ}C$. Nanoparticles are synthesized via inert gas condensation, one of the dry processes. Synthesized nanowires were confirmed via XRD, FESEM and TEM. As a result, all particles have grown to Cu2O nanowires (20~30 nm in diameter, 5~10 um in length; aspect ratio >160~500). Next, these synthesized oxide nanowires are reduced copper nanowires in the furnace under hydrogen flow at $200{\sim}450^{\circ}C$. The evolution of oxide nanowires and their transformation to copper nanowires is studied as a function of time.

  • PDF

THE VELOCITY FIELD OF SUPERNOVA-DRIVEN TURBULENCE IN THE INTERSTELLAR MEDIUM

  • KIM JONGSOO
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.237-241
    • /
    • 2004
  • We perform numerical experiments on supernova-driven turbulent flows in order to see whether or not supernovae playa major role in driving turbulence in the interstellar medium. In a $(200pc)^3$ computational box, we set up, as initial conditions, uniformly magnetized gas distributions with different pairs of hydrogen number densities and magnetic field strengths, which cover the observed values in the Galactic midplane. We then explode supernovae at randomly chosen positions at a Galactic explosion rate and follow up the evolution of the supernova-driven turbulent flows by integrating numerically the ideal MHD equations with cooling and heating terms. From the numerical experiments we find that the density-weighted velocity dispersions of the flows are in the range of 5-10 km $s^{-l}$, which are consistent with the observed velocity dispersions of cold and warm neutral media. Additionally, we find that strong compressible flows driven by supernova explosions quickly change into solenoidal flows.

A Study on the Recycling of Metals and Removal of Organics By Electrochemical Treatment of Mixed Waste Water of Surface Finishing Industry (표면처리 공정에서 발생하는 혼합 폐수의 전기화학적 처리에 의한 중금속의 재활용 및 유기물의 제거에 관한 연구)

  • 김영석;이중배
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.2
    • /
    • pp.184-193
    • /
    • 2003
  • Cyclic sweep voltametry was performed to investigate the electrochemical behavior of heavy metal ions and the organic additives in surface finishing process. And electrolysis using parallel plate electrode electrolyzer was carried out to simulate the treatment of real waste water. Results showed that more than 99 percent of Cu was recovered and selective recovery of Cu in mixed waste water was possible, but the possibility of economical recovery of Ni and Cr were very low due to the evolution of hydrogen gas. Electrochemical oxidation of cyanide and organic additives on anode showed very excellent removal rate. The complete removal of several hundred ppm of cynide was possible within several tens minutes and organics within 2 or 3 hours. Even in case of concentrate waste water, the complete removal of COD by using NaCl and air stirring seemed to be possible.

Kinetics and Mechanism of $N_2H_4-KBrO_3$ Reaction in the Presence of Allyl Alcohol$^\dag$

  • Choi, Q.-Won;Chung, Keun-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.6
    • /
    • pp.462-465
    • /
    • 1986
  • Kinetics and Mechanism of $N_2H_4-KBrO_3$ reaction in the presence of allyl alcohol have been studied. The pseudo-first order rate constant for gas evolution was found to be $10^{-4}{\sim}10^{-2}\;sec^{-1}\;at\;25.0{\pm}0.1^{\circ}C$, increasing with concentration of hydrogen ion. When concentrations of sulfuric acid and allyl alcohol are both sufficiently high, the following overall reaction explains experimental results reasonably well: $N_2H_4\;+\;BrO_3^-\;+\;H^+\;{\to}\;N_2\;+\;HOBr\;+\;2H_2O,\;CH_2\;=\;CHCH_2OH\;+\;HOBr\;{\to}\;CH_2-OHCHBrCH_2OH$. More complicated reaction mechanisms at lower acidity conditions have been contemplated.

An Analysis of Light-Induced Degradation of PECVD a-Si Films Using $SiF_4$ ($SiF_4$를 이용하여 증착한 PECVD 박막의 빛에 의한 열화도 특성 분석)

  • Jang, K.H.;Choi, H.S.;Han, M.K.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1019-1021
    • /
    • 1995
  • Light induced degradation of hydrogenated amorphous silicon(a-Si:H) are related to the number of weak dangling bonds which are thought to be responsible for the Staebler-Wronski effects, and caused the many photoelectric problems in applications of thin film transistors and solar cell, etc. In this paper, we deposited fluorinated amorphous silicon films(a-Si:H;F) with $SiH_4$ and $SiF_4$ gas mixture and investigated the effects of fluorine atoms on the evoluations of the crystallinity and improvements of light instability. We have found that micro-crystallinity produced in a-SI:H;F films and marked maximum value of 22% at the flow rate of $SiH_4:SiF_4$=2:10 sccm by UV spectrophotometer measurement, while n-Si:H film deposited with only $SiH_4$ gas showed no crystallinity. Light-induced degradation property of a-Si:H;F films is also improved which is mainly due to the etching effects of fluorine atoms on the weak Si-Si bonds and unstable hydrogen bonds. It is considered that involving fluorine atoms in a-Si:H films may contribute to the suppression of light-induced degradation and evolution of micro-crystallinity.

  • PDF

Thermal Effusion of Implanted Inert Gas Ions from Si(100) (Si(100)에 주입된 불활성 기체 이온들의 방출 특성)

  • Jo Sam K.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.73-80
    • /
    • 2006
  • Thermally-driven effusion of inert gases out from Si(100), into which energetic $\~l keV\;He^+,\;Ne^+,\;A^r+,\;and\;Kr^+ ions$ had been implanted at a moderate substrate temperatures of $\~400 K$, was investigated by means of temperature-programmed desorption (TPD) mass spectrometry. While He effused out broadly over $500\~1,100 K$, Ne, Ar, and Kr effusion occurred sharply at 810, 860, and 875 K, respectively. Hydrogen adsorption/desorption analysis for the ion-treated Si(100) surfaces indicated minimal to severe damage by ions with increasing mass from He to Kr. Implications of these results in light of literature reports are discussed.

Regional Cathodic Protection Design of a Natural Gas Distribution Station

  • Yabo, Hu;Feng, Zhang;Jun, Zhao
    • Corrosion Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.235-240
    • /
    • 2017
  • Regional cathodic protection has significant impact on pipeline integrity management. After risk analyses of a newly built gas distribution station constructed in an area with large dwelling density, risk score was high because of potential threat caused by galvanic corrosion. Except reinforced steel in concrete, there are four kinds of metal buried under earth: carbon steel, galvanized flat steel, zinc rod and graphite module. To protect buried pipeline from external corrosion, design and construction of regional cathodic protection was proposed. Current density was measured with potential using potential dynamic test and boundary element method (BEM) was used to calculate current requirement and optimize best anode placement during design. From our calculation on the potential, optimized conditions for this area were that an applied current was 3A and anode was placed at 40 meters deep from the soil surface. It results in potential range between $-1.128V_{CSE}$ and $-0.863V_{CSE}$, meeting the $-0.85V_{CSE}$ criterion and the $-1.2V_{CSE}$ criterion that no potential was more negative than $-1.2V_{CSE}$ to cause hydrogen evolution at defects in coating of the pipeline.

Perfluorinated Sulfonic Acid Ionomer Membranes for Valued Chemical Production (과불소계 술폰화 이오노머막을 이용한 고부가가치 화학품 제조)

  • Shim, Jae Goo;Park, In Kee;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.152-158
    • /
    • 2016
  • The Chlor-alkali (CA) membrane cell is a major electrolysis system to produce valued chemicals such as chlorine gas and sodium hydroxide. The CA membrane process has been attracted in the industries, since it has relatively low energy consumption when compared with other CA processes. The key component in CA process is perfluorinated sulfonic acid ionomer membranes, which provide ion-selectivity and barrier properties to produced gases. Unfortunately, there is limited information to determine which factors should be satisfied for CA applications. In this study, the influences of PFSA membranes on CA performances are disclosed. They include ion transport behaviors, gas evolution capability, and chemical/electrochemical resistances under CA operation conditions.

FLASH: The First Large Absorption Survey in HI with the Australian Square Kilometre Array Pathfinder

  • Yoon, Hyein;Sadler, Elaine;Allison, James;Moss, Vanessa;Mahony, Elizabeth;Whiting, Matthew;Su, Renzhi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.63.2-63.2
    • /
    • 2020
  • FLASH is a blind neutral hydrogen (HI) absorption line survey, eventually targeting about 100,000 background radio continuum sources in the entire southern sky using the full 36-antenna of the Australian Square Kilometre Array Pathfinder (ASKAP). Our primary goal is to search for associated and intervening HI absorption lines in the intermediate redshift range 0.4 < z < 1.0. The survey aims to understand the evolution of HI gas in galaxies as well as various physical mechanisms in active galactic nuclei, such as accretion and feedback processes. In this poster, we give an overview of the FLASH survey and present the preliminary results from our first 100-hrs of pilot observations. The latest survey data covers 1,000 square degrees and is ideal for validating observation and data processing in the continuous 300MHz-width low frequency ASKAP band (700-1000MHz). One of the crucial objectives of the pilot survey is to establish the analysis methodology that will be applied to upcoming large absorption surveys in the future. We discuss our data quality validation and present some detections of associated/intervening HI absorption lines. These absorption lines allow us to trace the cold gas properties of active and normal galaxies at higher redshifts where the HI emission line is too weak to be detectable.

  • PDF

The Effect of Additives on the High Current Density Copper Electroplating (고전류밀도에서 첨가제에 따른 구리도급의 표면 특성 연구)

  • Shim, Jin-Yong;Moon, Yun-Sung;Hur, Ki-Su;Koo, Yeon-Soo;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.1
    • /
    • pp.29-33
    • /
    • 2011
  • The current density in copper electroplating is directly related with the productivity and then to increase the productivity, the increase in current density is required. To obtain the high mass flow rate, rotating disk electrode(RDE) was employed. High rotational speed in RDE can increase the mass flow rate and then high speed electroplating was possible using RDE to control mass flow. Two types of cathode were used. One is RDE and another is rotating cylindrical electrode(RCE). A constant-current, constant-voltage and linear sweep voltammetry were applied to investigate current and voltage relationship. The maximum current density without evolution of hydrogen gas was increased with rotational speed. Over 400 rpm, maximum current density was higher than 1000 A/$m^2$. The diffusion coefficients of copper calculated from the slope of the plots are $5.5{\times}10^6\;cm^2\;s^{-1}$ at $25^{\circ}C$ and $10.5{\times}10^6\;cm^2\;s^{-1}$ at $62^{\circ}C$. The stable voltage without evolution of hydrogen gas was -0.05 V(vs Ag/AgCl). Additives were added to prevent dendritic growth on cathode deposits. The surface roughness was analyzed with UV-Vis Spectrophotometer. The reflectance of the copper surface over 600 nm was measured and was related with the surface roughness. As the surface roughness improved, the reflectance was also increased.