Thermal Effusion of Implanted Inert Gas Ions from Si(100)

Si(100)에 주입된 불활성 기체 이온들의 방출 특성

  • Jo Sam K. (Department of Chemistry, Kyung Won University)
  • Published : 2006.01.01

Abstract

Thermally-driven effusion of inert gases out from Si(100), into which energetic $\~l keV\;He^+,\;Ne^+,\;A^r+,\;and\;Kr^+ ions$ had been implanted at a moderate substrate temperatures of $\~400 K$, was investigated by means of temperature-programmed desorption (TPD) mass spectrometry. While He effused out broadly over $500\~1,100 K$, Ne, Ar, and Kr effusion occurred sharply at 810, 860, and 875 K, respectively. Hydrogen adsorption/desorption analysis for the ion-treated Si(100) surfaces indicated minimal to severe damage by ions with increasing mass from He to Kr. Implications of these results in light of literature reports are discussed.

Si(100)에 주입된 불활성 기체 이온들의 열적 방출 특성을 열탈착(temperature-programmed desorption; TPD) 질량분석법으로 고찰하였다. 약 400K의 표면 온도 조건에서 1keV 비온빔에 시료를 노출시켜 주었을 때, He은 $500\~1100 K$의 넓은 온도 범위에서 Si(100)결정 밖으로 분출되어 나온 반면, Ne, Ar, 및 Kr은 각각 810, 860, 875 K 근처에서 매우 좁은 온도 범위에서 TPD 피크를 나타내며 급격하게 방출되었다. He+ 이온으로 처리된 Si(100)은 표면 원자 구조의 손상이 상대적으로 최소한으로 일어났지만, $Ne^+,\;Ar^+,\;Kr^+$ 등의 이온들로 처리된 경우는 질량이 클수록 표면이 원자 스케일로 더 심하게 손상되었음이 수소 흡탈착 분석 결과로 밝혀졌다. 이온빔에 의한 결정 내부의 결함 생성과 관련하여 이러한 실험적 결과가 시사하는 점들을 논의하였다

Keywords

References

  1. S. Peripolli, E. Oliviero, P. F. P. Fichtner, M. Z. Z. Vasconcellos, and L. Amaral, Nucl. Instrum. Meth. B 242, 494 (2006) https://doi.org/10.1016/j.nimb.2005.08.138
  2. G. Gaudin, F. Cayrel, C. Bongiorno, R. Jerisian, C. Dubois, V. Raineri, and D. Alquier, Mater. Sci. Eng. B 125, 266 (2005) https://doi.org/10.1016/j.mseb.2005.08.080
  3. E. Oliviero, S. Peripolli, P. F. P. Fichtner, and L. Amaral, Mater. Sci. Eng. B 112, 111 (2004) https://doi.org/10.1016/j.mseb.2004.05.014
  4. V. Raineri, M. Saggio, and E. Rimini, J. Mater. Res. 15, 1449 (2000) https://doi.org/10.1557/JMR.2000.0211
  5. Rong Sun, T. Xu, and Qun-ji Xue, Appl. Surf. Sci. 249, 386 (2005) https://doi.org/10.1016/j.apsusc.2004.12.015
  6. X. Q. Feng and Y. Huang, Int. J. Solids Struct. 41, 4299 (2004) https://doi.org/10.1016/j.ijsolstr.2003.08.004
  7. P. Nguyen, I. Cayfeforsque, K. K. Bourdelle, A. Boussagol, E. Guiot, J. Appl. Phys. 97, 083527 (2005) https://doi.org/10.1063/1.1865318
  8. G. K. Celler and S. Cristoloveanu, J. Appl. Phys. 93, 4955 (2003) https://doi.org/10.1063/1.1558223
  9. G. N. A. van Veen, F. H. M. Sanders, J. Dieleman, A. van Veen, D. J. Oostra, and A. E. de Vries, Phys. Rev. Lett. 57, 739 (1986) https://doi.org/10.1103/PhysRevLett.57.739
  10. T. W. Simpson and I. V. Mitchell, Appl. Phys. Lett. 86, 241907 (2005) https://doi.org/10.1063/1.1947384
  11. T. S. Takaoka, T. Seki, K. Tsumura, and J. Matsuo, Thin Solid Films 405, 141 (2002) https://doi.org/10.1016/S0040-6090(01)01710-2
  12. A. Takashima, H. Hirayama, and K. Takayanagi, Phys. Rev. B 57, 7292 (1998) https://doi.org/10.1103/PhysRevB.57.7292
  13. K. Kyuno, D. G. Cahill, R. S. Averback, J. Tarus, and K. Nordlund, Phys. Rev. Lett. 83, 4788 (1999) https://doi.org/10.1103/PhysRevLett.83.4788
  14. P. Bedrossian and E. Kaxiras, Phys. Rev. Lett. 70, 2589 (1993) https://doi.org/10.1103/PhysRevLett.70.2589
  15. H. Feil, H. J. W. Zandvliet, M.-H. Tsai, J. D. Dow, and I. S. T. Tsong, Phys. Rev. Lett. 69, 3076 (1992) https://doi.org/10.1103/PhysRevLett.69.3076
  16. M. V. R. Murty and H. A. Atwater, Phys. Rev. B 45, 1507 (1992) https://doi.org/10.1103/PhysRevB.45.1507
  17. R. M. Feenstra and G. S. Oehrlein, Appl. Phys. Lett. 47, 97 (1985) https://doi.org/10.1063/1.96431
  18. S. Peripolli, E. Oliviero, P. F. P. Fichtner, M. A. Z. Vasconcellos, and L. Amaral, Nucl. Instrum. Meth. B 242, 494 (2006) https://doi.org/10.1016/j.nimb.2005.08.138
  19. S. E. Donnelly and J. H. Evans (Eds.), Fundamental Aspects of Inert Gases in Solids (Plenum Press, New York, 1991)
  20. E. Oliviero, M.L. David, M. F. Beaufort, and J. F. Barbot, Appl. Phys. Lett. 81, 4201 (2002) https://doi.org/10.1063/1.1525059
  21. S. Godey, E. Ntsoenzok, T. Sauvage, A. van Veen, F. Labohm, M. F. Beaufort, and J.F. Barbot, Mater. Sci. Eng. B 73, 54 (2000) https://doi.org/10.1016/S0921-5107(99)00433-X
  22. F. Corni, C. Nobili, G. Ottaviani, R. Tonini, G. Calzolari, G. F. Cerofolini, and G. Queirolo, Phys. Rev. B 56, 7331 (1997) https://doi.org/10.1103/PhysRevB.56.7331
  23. F. Corni, C. Nobili, R. Tonini, G. Ottaviani, and M. Tonelli, Appl. Phys. Lett. 78, 2870 (2001) https://doi.org/10.1063/1.1344568
  24. G. F. Cerofolini, Phys. Rev. B 61, 10183 (2000) https://doi.org/10.1103/PhysRevB.61.10183
  25. C. G. Griffioen, J. H. Evans, P. C. De Jong, and A. van Veen, Nucl. Instrum. Meth. B 27, 417 (1987) https://doi.org/10.1016/0168-583X(87)90522-2
  26. J. Y. Maeng, J. Y. Lee, Y. E. Cho, S. Kim, S. K. Jo, Appl. Phys. Lett. 81, 3555 (2002) https://doi.org/10.1063/1.1520329
  27. J. Y. Maeng, S. H. Kim, S. K. Jo, W. P. Pitts, and J. M. White, Appl. Phys. Lett. 79, 36 (2001) https://doi.org/10.1063/1.1379989
  28. S. K. Jo, J. H. Kang, X.-M. Yan, J. M. White, J. G. Ekerdt, J. W. Keto, and J. Lee, Phys. Rev. Lett. 85, 2144 (2000) https://doi.org/10.1103/PhysRevLett.85.2144
  29. S. Hahn, T. Hara, T. Maekawa, N. Satoh, Y.-K. Kwon, K.-I. Kim, Y.-H. Bae, W. J. Chung, E. K. McIntyre, W. L. Smith, L. Larson, and R. Meinecke, Nucl. Instrum. Meth. B 74, 275 (1993) https://doi.org/10.1016/0168-583X(93)95060-I
  30. M. R. Tesauro, Ion-Surface Interactions Relevant To Semiconductor Plasma Processing (Ph. D. Thesis, Univ. of Texas, Austin, USA, 1995)