• 제목/요약/키워드: Hydrogen flow

검색결과 1,079건 처리시간 0.025초

필터가 장착된 수소충전시스템용 리셉터클의 작동부 형상에 따른 유동 성능 분석 (Analysis of Flow Performance According to Actuator Geometry of Receptacle for Hydrogen Charging System with Filter Applied)

  • 최주환;김구호;김재광;김용기;서현규
    • 한국수소및신에너지학회논문집
    • /
    • 제34권1호
    • /
    • pp.17-25
    • /
    • 2023
  • The purpose of this study was to propose a design that shows optimal performance by changing the geometry of the internal flow path of the receptacle in order to prevent the decrease in flow rate and differential pressure performance due to the application of the receptacle in the hydrogen charging system. To achieve this, 3D computational fluid dynamics simulation was performed for the receptacle, according to the geometry of the flow path inside the receptacle. The pressure results at the inlet and outlet were measured the same as both of N and H2 in the experiment, and the flow rate of H2 was 3.75 times higher than that of N2. In addition, since the flow performance of the receptacle improved under conditions where the flow path was widened, it was confirmed that reducing the diameter of the poppet and the width of the guide are advantageous for improving performance.

수소연료전지 차량 충전에서의 압력강하 분석 (Pressure Drop Analysis on Filling of Hydrogen Fuel Cell Vehicles)

  • 서효민;박병흥
    • 한국가스학회지
    • /
    • 제27권1호
    • /
    • pp.38-47
    • /
    • 2023
  • 수소연료전지 차량 충전 과정에서, 충전소에서의 공급압력과 차량 내 저장 탱크의 압력 차이에 의해 수소가 흐르게 되고 유량은 압력 차에 의존한다. 따라서 충전 과정에서 발생하는 수소의 압력강하에 대한 고려는 필수적이며 이의 분석을 통해 수소 충전 과정의 효율성을 높일 수 있다. 본 연구에서는 충전라인 중 호스, 노즐/리셉터클, 파이프, 밸브에 대하여 압력강하를 분석하였다. 호스와 파이프는 도관에서의 압력강하로, 노즐/리셉터클은 흐름 노즐 식으로, 밸브는 기체 유량 식으로 계산하였다. 또한 각 구성요소에서 발생하는 압력강하 효과를 종합 분석한 결과 전체 충전라인에서 압력강하에 가장 큰 영향을 주는 요소는 밸브에서의 압력강하임이 밝혀졌다. 이번 연구는 추후 수소 충전을 포함한 수소 유동 해석으로 수소 충전 과정의 모델 개발에 활용될 수 있을 것이다.

극저온 냉동기를 활용한 기체수소 예냉 시스템의 검증에 관한 연구 Part I: 실험적 연구 및 이론적 분석 (Study on Validity of Pre-cooling System for Hydrogen Gas Using Cryocooler Part I: Experimental Investigation and Theoretical Analysis)

  • 하동우;노현우;서영민;구태형;고락길
    • 한국수소및신에너지학회논문집
    • /
    • 제34권4호
    • /
    • pp.350-357
    • /
    • 2023
  • In this study, the experimental investigation and theoretical analysis were conducted to verify the cooling capacity of the cryocooler used for pre-cooling of hydrogen gas. The effect of the flow rate on a copper pipe attached to the bottom of the cryocooler, which has a coil shape in a hydrogen line, was investigated. Temperature sensors were strategically placed at various positions on the cryocooler to analyze the temperature variations with respect to the flow rate. In this study, the thermal properties of hydrogen for the pressure and temperature were utilized using REFPROP to analyze the cooling capacity of the cryocooler. Based on the experimental results derived from this study, the cooling capacity of the cryocooler for pre-cooling hydrogen gas was considered by calculating the cooling temperature according to the flow rate through theoretical analysis.

증착 온도 및 수소 유량에 따른 IGZO 박막의 구조적 및 전기적 특성 (Structural and Electrical Characteristics of IGZO Thin Films Deposited at Different Substrate Temperature and Hydrogen Flow Rate)

  • 박수진;이규만
    • 반도체디스플레이기술학회지
    • /
    • 제15권4호
    • /
    • pp.46-50
    • /
    • 2016
  • In this study, we have investigated the effect of the substrate temperature and hydrogen flow rate on the characteristics of IGZO thin films for the TCO(transparent conducting oxide). For this purpose, IGZO thin films were deposited by RF magnetron sputtering at room temperature and $300^{\circ}C$ with various $H_2$ flow rate. In order to investigate the influences of the hydrogen, the flow rate of hydrogen in argon mixing gas has been changed from 0.1sccm to 1.0sccm. IGZO thin films deposited at room temperature show amorphous structure, whereas IGZO thin films deposited at $300^{\circ}C$ show crystalline structure having an (222) preferential orientation. The electrical resistivity of the amorphous-IGZO films deposited at R.T. was lower than that of the crystalline-IGZO thin films deposited at $300^{\circ}C$. The increase of electrical resistivity with increasing substrate temperature was interpreted in terms of the decrease of the charge carrier mobility. The transmittance of the IGZO films deposited at $300^{\circ}C$ was decreased deposited with hydrogen gas.

Reverse uni-flow 소기방식을 갖는 2행정 프리피스톤 수소기관의 역화 현상에 관한 연구 (The Characteristics of Backfire for a Free-Piston Hydrogen Fueled Engine with Reverse Uni-flow Scavenging)

  • 변창희;조관연;백대하;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제21권2호
    • /
    • pp.98-103
    • /
    • 2010
  • In order to develop two-stroke free-piston hydrogen engine to obtain high thermal efficiency and low emission, backfire occurrence have to be prevented. In this research, backfire characteristics are analyzed as functions of the intake valve opening timing and compression chamber pressure under piston by using RICEM (Rapid Intake Compression Expansion Machine) that has reverse uni-flow scavenging. As the result, reverse uni-flow scavenging is advantage about back fire. but, it exists suitable intake valve opening timing and its timing become known that equivalence ratio 1 retard until the piston rises. Also, To rise chamber pressure of lower piston, this does not cause backfire occurs in equivalent ratio 0.6 observed back fire. Therefore, 2cycle hydrogen fueled free-piston engine is undesirable scavenging compression by compressing the piston.

연료전지자동차의 고압수소저장시스템 수소 누출 안전성 평가 (The Evaluation of Hydrogen Leakage Safety for the High Pressure Hydrogen System of Fuel Cell Vehicle)

  • 김형기;최영민;김상현;심지현;황인철
    • 한국수소및신에너지학회논문집
    • /
    • 제23권4호
    • /
    • pp.316-322
    • /
    • 2012
  • A fuel cell vehicle has the hydrogen detection sensors for checking the hydrogen leakage because it use hydrogen for its fuel and can't use a odorant to protect the fuel cell stack. To verify the hydrogen safety of leakage we select the high possible leak points of fittings in hydrogen storage system and test the leaking behavior at them. The hydrogen leakage flow rate is 10, 40, 118 NL/min and the criterion for maximum hydrogen leakage is based on allowing an equivalent release of combustion energy as permitted by gasoline vehicles in FMVSS301. There are total 18EA hydrogen leakage detection sensors installed in test system. we acquire the hydrogen leakage detection time and determine the ranking. Hydrogen leakage detection time decrease when hydrogen leakage flow rate increase. The minimum hydrogen leakage detection time is about 3 seconds when the flow rate is 118NL/min. In this study, we optimize hydrogen sensor position in fuel cell vehicle and verify the hydrogen leakage safety because there is no inflow inside the vehicle.

고압수소 유량계측용 임계노즐 유동의 수치해석적 연구 (A Computational Work of Critical Nozzle Flow for High-Pressure Hydrogen Gas Mass Flow Measurement)

  • 이준희;김희동;박경암
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.227-230
    • /
    • 2006
  • The method of mass flow rate measurement using a critical nozzle is well established in the flow satisfying ideal gas law. However, in the case of measuring high-pressure gas flow, the current method shows invalid discharge coefficient because the flow does not follow ideal gas law. Therefore an appropriate equation of state considering real gas effects should be applied into the method. The present computational study has been performed to give an understanding of the physics of a critical nozzle flow for high-pressure hydrogen gas and find a way for the exact mass flow prediction. The two-dimensional, axisymmetric, compressible Navier-Stokes equations are computed using a fully implicit finite volume method. The real gas effects are considered in the calculation of discharge coefficient as well as in the computation. The computational results are compared with the previous experimental data and predict well the measured mass flow rates. It has been found that the discharge coefficient for high-pressure hydrogen gas can be corrected properly adopting the real gas effects.

  • PDF

균일형 유로에서 기포의 거동에 관한 연구 (Study on the Behaivor of Bubbles in Array Type Flow Channels)

  • 정영관
    • 한국수소및신에너지학회논문집
    • /
    • 제24권1호
    • /
    • pp.84-90
    • /
    • 2013
  • The hydrogen or oxygen gas producted by electrolysis become many bubbles in the electrolyte, but exact data on the behavior of these bubbles in the separator of an electrolysis stack didn't become known. In this study, the flow visualization experiment on the behavior of bubbles in the flow pattern of the array type separator is performed by using of a visible alkaline electrolysis stack and a stereoscopic microscope. As the results, a fine size bubbles adhered to the surface of the flow pattern grow to large sized bubbles until each bubble's buoyance is lager than the sum of external force and weight. And then the large bubbles flow into the upper area of the separator. Bubbles adhered to the surface of the vertical flow pattern grow quickly than them adhered to the surface of the horizontal flow pattern. Also, he electrolysis efficiency is declined because many multi-size bubbles occupied the wide volume in the flow pattern.

수소전기차용 700 bar 수소충전노즐의 노즐형상을 고려한 최적설계에 관한 연구 (Study on the Optimal Design of the Nozzle Shape of the 700 bar Hydrogen Refueling Nozzle for Hydrogen Electric Vehicles)

  • 백진욱;곽기명;김남용;조용민;류성기
    • 한국기계가공학회지
    • /
    • 제21권7호
    • /
    • pp.28-33
    • /
    • 2022
  • In this study, we analyze the flow characteristics according to the internal shape of a 700bar hydrogen charging gun for hydrogen electric vehicles. When charging hydrogen, it receives a high-pressure charging pressure. At this time, we analyze the flow characteristics according to the shape of the nozzle and find the shape of the nozzle that minimizes energy loss. Ultimately, the optimal design of the nozzle was obtained by comparing the pressure difference between the inlet pressure and outlet pressure under a fixed mass flow condition.

3차 상태방정식을 이용한 수소 충전 온도 거동 모사 (Simulation of Temperature Behavior in Hydrogen Tank During Refueling Using Cubic Equations of State)

  • 박병흥
    • 한국수소및신에너지학회논문집
    • /
    • 제30권5호
    • /
    • pp.385-394
    • /
    • 2019
  • The analysis of temperature behavior of a hydrogen tank during refueling is of significance to clarify the safety of the compressed hydrogen storage in vehicles since the temperature at a tank rises with inflow of hydrogen. A mass balance and an energy balance were combined to obtain analytical model for temperature change during the hydrogen refueling. The equation was coupled to Peng-Robinson-Gasem (PRG) equation of state (EOS) for hydrogen. The PRG EOS was adopted after comparison with other four different cubic EOSs. A parameter of the model was determined to fit data from experiments of various inlet flow rates and temperatures. The temperature and pressure change with refueling time were obtained by the developed model. The calculation results revealed that the extent of precooling was more effective than the flow rate control.