• Title/Summary/Keyword: Hydrogen filling

Search Result 85, Processing Time 0.034 seconds

Estimation of Hydrogen Filling Time Using a Dynamic Modeling (동적 모델링에 의한 수소 충전 시에 걸리는 시간의 산출)

  • NOH, SANGGYUN
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.3
    • /
    • pp.189-195
    • /
    • 2021
  • A compressed hydrogen tank is to be repressurized to 40 bar by being connected to a high-pressure line containing hydrogen at 50 bar and 25℃. Hydrogen filling time and the corresponding hydrogen temperature has been estimated when the filling process stopped according to several thermodynamic models. During the process of cooling the hydrogen tank, hydrogen temperature and pressure vs. time estimation was performed using Aspen Dynamics. Filling time, hydrogen temperature after filling hydrogen gas, cooling time and the final tank pressure after tank filling process have been completed according to the thermodynamic models are almost same.

Pressure Drop Analysis on Filling of Hydrogen Fuel Cell Vehicles (수소연료전지 차량 충전에서의 압력강하 분석)

  • Hyo Min Seo;Byung Heung Park
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.38-47
    • /
    • 2023
  • In the hydrogen filling process, hydrogen flows by the pressure difference between the supply pressure at a filling station and a storage tank in the vehicle, and the flow rate depends on the pressure difference. Therefore, it is essential to consider the pressure drop of hydrogen occurring during the filling process, and the efficiency of the hydrogen filling process can be improved through its analysis. In this study, the pressure drop was analyzed for a hose, a nozzle/receptacle coupling, a pipe, and a valve in a filling line. The pressure drops through hose and pipe, the nozzle,receptacle coupling, and the valve were calculated by using a equation for a straight conduit, a flow nozzle formula, and a gas flow respectively. In addition, as a result of comprehensive analysis of the pressure drop effect occurring in each component, it was found that the factor that has the greatest influence on the pressure drop in the entire filling line is the pressure drop through the valve. This study can be used to develop a model of the hydrogen filling process by analyzing hydrogen flow including hydrogen filling in the future.

Numerical Simulation of Fast Filling of a Hydrogen Tank

  • Suryan, Abhilash;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.353-358
    • /
    • 2010
  • High pressure gas is a widely used storage mode for hydrogen fuel. A typical hydrogen tank that is charged with hydrogen gas can function as a hydrogen supply source in a large number of applications. The filling process of a high-pressure hydrogen tank should be reasonably short. However, when the fill time is short, the maximum temperature in the tank increases. Therefore the process should be designed in such a way to avoid high temperatures in the tank because of safety reasons. The paper simulates the fast filling process of hydrogen tanks using Computational Fluid Dynamics method. The local temperature distribution in the tank is obtained. Results obtained are compared with available experimental data. Further work is going on to improve the accuracy of the calculations.

  • PDF

A Theoretical Study on the Hydrogen Temperature Evolution Inside the Tank under Fast Filling Process (급속 충전에서 탱크 내부의 수소 온도 변화에 관한 이론 연구)

  • JI-CHAO LI;JI-QIANG LI;HENG XU;BYUNG CHUL CHOI;JEONG-TAE KWON
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.6
    • /
    • pp.608-614
    • /
    • 2023
  • The fast filling process of high-pressure hydrogen has an important impact on the filling efficiency and safety. In this paper, a specific study is carried out on the thermophysical phenomena during the fast filling process. Starting from the gas state equation of hydrogen, the change law of the hydrogen storage temperature is obtained, and then the temperature rise prediction is constructed. The model can clarify the relationship between the filling parameters and the temperature rise during the fast filling process, thereby revealing the flow and heat transfer laws of the fast charging process. To improve the theoretical research basis for the evaluation of vehicle-mounted hydrogen fast charging capacity, temperature prediction and optimization of hydrogenation methods.

An Experimental Study on Internal Temperature Changes of Type Ⅳ Cylinder according to Filling with Compressed Hydrogen Gas (압축수소가스 충전에 따른 타입 IV 용기의 온도 변화에 관한 실험적 연구)

  • Lee, Seung-Hoon;Kim, Youn-Gyu;Yoon, Kee-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.644-647
    • /
    • 2009
  • In this paper, the study is researched for related safety standards having experiments concerning temperature changes in type IV cylinder of the Hydrogen fuel cell vehicle. Experiments were performed to acquire temperature data of type IV cylinder according to filling time. The experimental results are shown that internal temperatures of type Ⅳ vessel are over $85^{\circ}C$ at all measured points after 5 minutes at filling 35 MPa and the highest temperature is getting lower when the residual gases are more remained. Consequently, the safety standards need properly limited value through further study for filling flow rate and filling time.

  • PDF

Numerical Study on the Effects of Gravity Direction and Hydrogen Filling Rate on BOG in the Liquefied Hydrogen Storage Tank (액체수소 저장 탱크의 중력 방향 및 수소 충전율이 BOG에 미치는 영향에 관한 수치적 연구)

  • YOUNG MIN SEO;HYUN WOO NOH;DONG WOO HA;TAE HYUNG KOO;ROCK KIL KO
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.4
    • /
    • pp.342-349
    • /
    • 2023
  • In this study, a numerical simulations were conducted to analyze the phase change behavior of a liquid hydrogen storage container. The effects of gravity direction and hydrogen filling rate on boil-off gas (BOG) in the storage container were investigated. The study employed the volume of fluid, which is the phase change analysis model provided by ANSYS Fluent (ANSYS, Canonsburg, PA, USA), to investigate the sloshing phenomenon inside the liquefied hydrogen fuel tank. Considering the transient analysis time, two-dimensional simulation were carried out to examine the characteristics of the flow and thermal fields. The results indicated that the thermal flow characteristics and BOG phenomena inside the two-dimensional liquefied hydrogen storage container were significantly influenced by changes in gravity direction and hydrogen filling rate.

Prediction of Changes in Filling Time and Temperature of Hydrogen Tank According to SOC of Hydrogen (수소 잔존 용량에 따른 수소 탱크 충전 시간 및 온도 변화 예측)

  • LEE, HYUNWOO;OH, DONGHYUN;SEO, YOUNGJIN
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.4
    • /
    • pp.345-350
    • /
    • 2020
  • Hydrogen is an green energy without pollution. Recently, fuel cell electric vehicle has been commercialized, and many studies have been conducted on hydrogen tanks for vehicles. The hydrogen tank for vehicles can be charged up to 70 MPa pressure. In this study, the change in filling time, pressure, and temperature for each hydrogen level in a 59 L hydrogen tank was predicted by numerical analysis. The injected hydrogen has the properties of real gas, the temperature is -40℃, and the mass flow rate is injected into the tank at 35 g/s. The initial tank internal temperature is 25℃. Realizable k-epsilon turbulence model was used for numerical analysis. As a result of numerical analysis, it was predicted that the temperature, charging time, and the mass of injected hydrogen increased as the residual capacity of hydrogen is smaller.

A Study on Safety Improvement for Packaged Hydrogen Refueling Station by Risk Assessment (위험성 평가를 통한 패키지형 수소충전소 안전성 향상에 관한 연구)

  • KANG, SEUNGKYU;HUH, YUNSIL;MOON, JONGSAM
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.6
    • /
    • pp.635-641
    • /
    • 2017
  • In this study, the components of packaged hydrogen filling station were analyzed and risk factors were examined. Risk scenarios were constructed and quantitative risk assessments were conducted through a general risk assessment program (phast/safeti 7.2). Through the risk assessment, the range of damage according to accident scenarios and the ranking that affects the damage according to the risk factors are listed, and scope of damage and countermeasures for risk reduction are provided. The quantitative risk assessment result of the packaged hydrogen filling station through this task will be used as the basic data for improving the safety of the packaged filling system and preparing safety standards.

A Study on Site to Build Hydrogen Multi Energy Filling Station in Domestic LPG Station (국내 LPG 충전소 내 수소 융·복합충전소 구축 가능 부지 연구)

  • PARK, JIWON;HUH, YUNSIL;KANG, SEUNGKYU
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.6
    • /
    • pp.642-648
    • /
    • 2017
  • The use of fossil is causing enviromental all over the world. So hydrogen energy is attracting attention as one of the alternative. The government announced that 30% of the air pollution is because of the Internal Combustion Engine Vehicle. In addition, they plans to reduce Internal Combustion Engine Vehicles by 2030 and increase (electric vehicles, EV) or (fuel cell vehicle, FCV). The FCV is evaluated as a next-generation green car because it has a long driving distance and short charging time. However, the hydrogen industry is not able to expand due to the lack of refueling infrastrucutre. This paper predicts the site of hydrogen refueling stations for the expansion of the hydrogen industry and proposes a method to supply hydrogen multi energy filling stations.

Superconformal gap-filling of nano trenches by metalorganic chemical vapor deposition (MOCVD) with hydrogen plasma treatment

  • Moon, H.K.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.246-246
    • /
    • 2010
  • As the trench width in the interconnect technology decreases down to nano-scale below 50 nm, superconformal gap-filling process of Cu becomes very critical for Cu interconnect. Obtaining superconfomral gap-filling of Cu in the nano-scale trench or via hole using MOCVD is essential to control nucleation and growth of Cu. Therefore, nucleation of Cu must be suppressed near the entrance surface of the trench while Cu layer nucleates and grows at the bottom of the trench. In this study, suppression of Cu nucleation was achieved by treating the Ru barrier metal surface with capacitively coupled hydrogen plasma. Effect of hydrogen plasma pretreatment on Cu nucleation was investigated during MOCVD on atomic-layer deposited (ALD)-Ru barrier surface. It was found that the nucleation and growth of Cu was affected by hydrogen plasma treatment condition. In particular, as the plasma pretreatment time and electrode power increased, Cu nucleation was inhibited. Experimental data suggests that hydrogen atoms from the plasma was implanted onto the Ru surface, which resulted in suppression of Cu nucleation owing to prevention of adsorption of Cu precursor molecules. Due to the hydrogen plasma treatment of the trench on Ru barrier surface, the suppression of Cu nucleation near the entrance of the trenches was achieved and then led to the superconformal gap filling of the nano-scale trenches. In the case for without hydrogen plasma treatments, however, over-grown Cu covered the whole entrance of nano-scale trenches. Detailed mechanism of nucleation suppression and resulting in nano-scale superconformal gap-filling of Cu will be discussed in detail.

  • PDF