• Title/Summary/Keyword: Hydrogen fermentation

Search Result 224, Processing Time 0.026 seconds

Hydrogen and Organic Acids Production by Fermentation Using Various Anaerobic Bacteria (각종 혐기성 미생물 발효에 의한 유기산 및 수소생산)

  • Kim, Mi-Sun;Yoon, Y.S.;Sim, S.J.;Park, T.H.;Lee, J.K.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.4
    • /
    • pp.321-329
    • /
    • 2002
  • Clostridium butyricum, Lactobacillus amylophillus, Lactobacillus amylovorus, Lactobacillus acidophillus, AI-9 produced hydrogen and /or organic acids using glucose, lactose and starch at the anaerobic culture conditions. Cl. butyricum NCIB 9576 evolved 1,700 ml H2/L-culture broth and accumulated butyric acid, acetic acid, propionic acid and ethanol in its culture broth when lactose was used as a carbon source during 24 hrs of fermentation. L. amylovorus ATCC 33620 accumulated lactic and acetic acids and some reducing sugars when starch was used as a carbon source without hydrogen production. Instead of starch as a carbon source, L. amylovorus ATCC 33620 produced lactic acid from algal biomass during fermentation and the acid-heat or freeze-thaw pretreatment of algal biomass accelerate the lactic acid fermentation.

Effects of Pretreatment Time and pH low set value on Continuous Mesophilic Hydrogen Fermentation of Food Waste (열처리 시간과 pH 하한값이 음식물쓰레기 연속 중온 수소 발효에 미치는 영향)

  • Kim, Sang-Hyoun;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.343-348
    • /
    • 2011
  • Since 2005, food waste has been separately collected and recycled to animal feed or aerobic compost in South Korea. However, the conventional recycling methods discharge process wastewater, which contain pollutant equivalent to more than 50% of food waste. Therefore, anaerobic digestion is considered as an alternative recycling method of food waste to reduce pollutant and recover renewable energy. Recent studies showed that hydrogen can be produced at acidogenic stage in two-stage anaerobic digestion. In this study, the authors investigated the effects of pretreatment time and pH low set value on continuous mesophilic hydrogen fermentation of food waste. Food waste was successfully converted to $H_2$ when heat-treated at $70^{\circ}C$ for 60 min, which was milder than previous studies using pH 12 for 1 day or $90^{\circ}C$. Organic acid production dropped operational pH below 5.0 and caused a metabolic shift from $H_2/butyrate$ fermentation to lactate fermentation. Therefore, alkaline addition for operational pH at or over 5.0 was necessary. At pH 5.3, the result showed that the maximum hydrogen productivity and yield of 1.32 $m^3/m^3$.d and 0.71 mol/mol $carbohydrate_{added}$. Hydrogen production from food waste would be an effective technology for resource recovery as well as waste treatment.

SUPPRESSION OF HYDROGEN CONSUMING BACTERIA IN ANAEROBIC HYDROGEN FERMENTATION

  • Park, Woo-Shin;Jang, Nam-J.;Hyun, Seung-H.;Kim, In-S.
    • Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.181-190
    • /
    • 2005
  • Severe loss or hydrogen occurred in most anaerobic hydrogen fermentation reactors. Several selected methods were applied to suppress the consumption of hydrogen and increase the potential of production. As the first trial, pH shock was applied. The pH of reactor was dropped nearly to 3.0 by stopping alkalinity supply and on]y feeding glucose (5 g/L-d). As the pH was increase to $4.8{\pm}0.2,$ the degradation pathway was derived to solventogenesis resulting in disappearance of hydrogen in the headspace. In the aspect of bacterial community, methanogens weren't detected after 22 and 35 day, respectively. Even though, however, there was no methanogenic bacterium detected with fluorescence in-situ hybridization (FISH) method, hydrogen loss still occurred in the reactor showing a continuous increase of acetate when the pH was increased to $5.5{\pm}0.2$. This result was suggesting the possibility of the survival of spore fanning acetogenic bacteria enduring the severely acidic pH. As an alternative and additive method, nitrate was added in a batch experiment. It resulted in the increase of maximum hydrogen fraction from 29 (blank) to 61 % $(500\;mg\;NO_3/L)$. However, unfortunately, the loss of hydrogen occurred right after the depletion of nitrate by denitrification. In order to prevent the loss entangled with acetate formation, $CO_2$ scavenging in the headspace was applied to the hydrogen fermentation with heat-treated sludge since it was the primer of acetogenesis. As the $CO_2$ scavenging was applied, the maximum fraction of hydrogen was enhanced from 68 % to 87 %. And the loss of hydrogen could be protected effectively.

Hydrogen Gas Production by Fermentation from Various Sugars Using Clostridium butyricum NCIB 9576 (Clostridium butyricum NCIB 9576에 의한 당으로부터 혐기적 수소생산)

  • Kim, Mi-Sun;Moon, Kwang-Woong;Lee, In-Gu;Lee, Tae-Jin;Sung, Chang-Keun
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.1
    • /
    • pp.62-69
    • /
    • 1999
  • Clostridium butyricum NCIB 9576 evolved hydrogen gas and produced various organic acids from glucose, lactose, starch, and glycerol. Total amount of hydrogen gas produced from 1 and 2% glucose were 630 and 950ml $H_2$/l-broth, respectively, for the first 24 hrs of incubation and the maximum hydrogen production rates were 42 and 94ml $H_2$/hr/1-broth, respectively. Teh initial pH 6.8 decreased to 4.2~4.5 during the first 12~16 hrs of fermentation when the pH was not controlled, resulting in ceasing the cell growth and hydrogen evolution and in degradation of 82 and 40% glucose after 24hrs of incubation from 1 and 2% glucose, respectively. When pH was controlled to 5.5, glucose was consumed completely and resulted in increasing hydrogen production approximately 38~50% compared to the experiments without the pH control. C. butyricum NCIB 9576 produced hydrogen gas approximately 644, 1,700 and 3,080 ml $H_2$/l-broth with 0.5, 1 and 2% lactose, respectively and the maximum hydrogen production rates were 41, 141 and 179ml $H_2$/hr/l-broth, respectively. All of the lactose added was degraded completely during fermentation even though pH was not controlled. C. butyricum NCIB 9576 produced 183 and 709ml $H_2$/l-broth with 0.1 and 0.5% starch for 48 hrs, respectively, when pH was not controlled. The maximum rates of hydrogen gas production were 43 and 186ml $H_2$/l-broth, respectively and 80~100% of starch added was fermented. Approximately 107ml $H_2$/l-broth was produced using 1% glycerol by C. butyricum NCIB 9576 and the pH was maintained higher than 6.1 during fermentation without pH control. The degradation of glucose, lactose, starch and glycerol by C. butyricum NCIB 9576 were affected by the pH of fermentation broth and the organic acids released during fermentation. The pH of feremtntation broth dropped to 4.2~4.6 after 12~14 hrs incubation when glucose was used as a substrate while pHs were maintained above pH 5 under the same experimental conditions when lactose, starch and glycerol were used. The organic solvents and acids produced during glucose fermentation were mainly ethanol, butyrate, acetate and a little of propionate, while butyrate was the main organic acids during the lactose, starch, and glycerol fermentation by C. butyricum NCIB 9576.

  • PDF

Effects of pH and Carbon Sources on Biohydrogen Production by Co-Culture of Clostridium butyricum and Rhodobacter sphaeroides

  • Lee, Jung-Yeol;Chen, Xue-Jiao;Lee, Eun-Jung;Min, Kyung-Sok
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.400-406
    • /
    • 2012
  • To improve the hydrogen yield from biological fermentation of organic wastewater, a co-culture system of dark- and photo-fermentation bacteria was investigated. In a pure-culture system of the dark-fermentation bacterium Clostridium butyricum, a pH of 6.25 was found to be optimal, resulting in a hydrogen production rate of 18.7 ml-$H_2/l/h$. On the other hand, the photosynthetic bacterium Rhodobacter sphaeroides could produce the most hydrogen at 1.81mol-$H_2/mol$-glucose at pH 7.0. The maximum specific growth rate of R. sphaeroides was determined to be 2.93 $h^{-1}$ when acetic acid was used as the carbon source, a result that was significantly higher than that obtained using either glucose or a mixture of volatile fatty acids (VFAs). Acetic acid best supported R. sphaeroides cell growth but not hydrogen production. In the co-culture system with glucose, hydrogen could be steadily produced without any lag phase. There were distinguishable inflection points in a plot of accumulated hydrogen over time, resulting from the dynamic production or consumption of VFAs by the interaction between the dark- and photo-fermentation bacteria. Lastly, the hydrogen production rate of a repeated fed-batch run was 15.9 ml-$H_2/l/h$, which was achievable in a sustainable manner.

Hydrogen gas production by fermentation from various organic wastewater using Clostridium butyricum NCIB 9576 and Rhodopseudomonas sphaeroides E15-1 (각종 유기성 폐수로부터 Clostridium butyricum 및 Rhodopseudomonas sphaeroides에 의한 수소생산)

  • Yoon, Young-Sue;Kim, Hyun-Kyung;Ryu, Hye-Yeon;Lee, In-Gu;Kim, Mi-Sun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.11 no.1
    • /
    • pp.29-41
    • /
    • 2000
  • Anaerobic fermentation using Clostridium butyricum NCIB 9576, and photo-fermentation using Rhodopseudomonas sphaeroides E15-1 were studied for the production of hydrogen from Makkoli, fruits (orange & apple, watermelon & melon) and Tofu wastewaters. From the Makkoli wastewater, which contained $0.94g/{\ell}$ sugars and $2.74g/{\ell}$ soluble starch, approximately $49mM\;H_2/{\ell}$ wastewater was produced during the initial 18h of the anaerobic fermentation with pH control between 6.5-7.0. Several organic acids such as butyric acid, acetic acid, propionic acid, lactic acid and ethanol were also produced. From Watemlelon and melon wastewater, which contained $43g/{\ell}$ sugars, generated about approximately $71mM\;H_2/{\ell}$ wastewater was produced during the initial 24 h of the anaerobic fermentation. Tofu wastewater, pH 6.5, containing $12.6g/{\ell}$ soluble starch and $0.74g/{\ell}$ sugars, generated about $30mM\;H_2/{\ell}$ wastewater, along with some organic acids, during the initial 24 h of anaerobic fermentation. Makkoli and Tofu wastewaters as substrates for the photo-fermentation by Rhodopseudomonas sphaeroides E15-1 produced approximately 37.9 and $22.2{\mu}M\;H_2/m{\ell}$ wastewaters, respectively for 9 days of incubation under the average of 9,000-10,000 lux illumination at the surface of reactor using tungsten halogen lamps. Orange and apple wastewater, which contained 93.4 g/l, produced approximately $13.1{\mu}M\;H_2/m{\ell}$ wastewater only for 2 days of photo-fermentation and the growth of Rhodopseudomonas sphaeroides E15-1 and hydrogen production were stopped.

  • PDF

Control of Rumen Microbial Fermentation for Mitigating Methane Emissions from the Rumen

  • Mitsumori, Makoto;Sun, Weibin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.1
    • /
    • pp.144-154
    • /
    • 2008
  • The rumen microbial ecosystem produces methane as a result of anaerobic fermentation. Methanogenesis in the rumen is thought to represent a 2-12% loss of energy intake and is estimated to be about 15% of total atmospheric methane emissions. While methanogenesis in the rumen is conducted by methanogens, PCR-based techniques have recently detected many uncultured methanogens which have a broader phylogenetic range than cultured strains isolated from the rumen. Strategies for reduction of methane emissions from the rumen have been proposed. These include 1) control of components in feed, 2) application of feed additives and 3) biological control of rumen fermentation. In any case, although it could be possible that repression of hydrogen-producing reactions leads to abatement of methane production, repression of hydrogen-producing reactions means repression of the activity of rumen fermentation and leads to restrained digestibility of carbohydrates and suppression of microbial growth. Thus, in order to reduce the flow of hydrogen into methane production, hydrogen should be diverted into propionate production via lactate or fumarate.

Anaerobic Hydrogen Fermentation and Membrane Bioreactor (MBR) for Decentralized Sanitation and Reuse-Organic Removal and Resource Recovery

  • Paudel, Sachin;Seong, Chung Yeol;Park, Da Rang;Seo, Gyu Tae
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.387-393
    • /
    • 2014
  • The purpose of this study is to evaluate integrated anaerobic hydrogen fermentation and membrane bioreactor (MBR) for on-site domestic wastewater treatment and resource recovery. A synthetic wastewater (COD 17,000 mg/L) was used as artificial brown water which will be discharged from urine diversion toilet and fed into a continuous stirred tank reactor (CSTR) type anaerobic reactor with inclined plate. The effluent of anaerobic reactor mixed with real household grey water (COD 700 mg/L) was further treated by MBR for reuse. An optimum condition maintained in anaerobic reactor was HRT of 8 hrs, pH 5.5, SRT of 5 days and temperature of $37^{\circ}C$. COD removal of 98% was achieved from the overall system. Total gas production rate and hydrogen content was 4.6 L/day and 52.4% respectively. COD mass balance described the COD distribution in the system via reactor byproducts and effluent COD concentration. The results of this study asserts that, anaerobic hydrogen fermentation combined with MBR is a potent system in stabilizing waste strength and clean hydrogen recovery which could be implemented for onsite domestic wastewater treatment and reuse.

Two-Stage Biological Hydrogen Production by Rhodopseudomonas palustris P4 (Rhodopseudomonas palustris P4에 의한 이 단계(Two-stage) 생물학적 수소생산)

  • Yun, Young-Su;In, Sun-Kyoung;Baek, Jin-Sook;Park, Sung-Hoon;Oh, You-Kwan;Kim, Mi-Sun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.4
    • /
    • pp.315-323
    • /
    • 2005
  • The integrated or the two-stage (dark anaerobic and photosynthetic) fermentation processes were compared for the hydrogen production using purple non-sulfur photosynthetic bacteria, Rhodopseudomonas palustris P4. Cell growth, pH changes and organic acids and bacteriochlorophyll contents were monitored during the processes. Culture broth of Rps. palustris P4 exhibited dark-red during the photosynthetic culture condition, while yellow under the anaerobic condition without light. Rps. palustris P4 grown at the photosynthetic condition evolved 0.38 and 1.33 ml $H_2$/mg-dcw during the dark and the light fermentation, respectively, which were totally 1.71 ml $H_2$/mg-dcw at the two-stage fermentation. The rate of hydrogen production using Rps. palustris P4 grown under the dark anaerobic condition was 2.76 ml $H_2$/mg-dcw which consisted of 0.46 and 2.30 ml $H_2$/mg-dcw from the dark and the photosynthetic fermentation processes, respectively. Rps. palustris P4 grown under dark anaerobic conditions produced $H_2$ 1.6 times higher than that of grown under the photosynthetic condition. However, total fermentation period of the former was 1.5 times slower than that of the latter, because the induced time of hydrogen production during the photosynthetic fermentation was 96 and 24 hours when the seed culture was the dark anaerobic and photosynthetic, respectively. The integrated fermentation process by Rps. palustris P4 produced 0.52 ml $H_2$/mg-dcw(1.01 mol $H_2$/mol glucose), which was 20% of the two-stage fermentation.

Can a Fermentation Gas Mainly Produced by Rumen Isotrichidae Ciliates be a Potential Source of Biohydrogen and a Fuel for a Chemical Fuel Cell?

  • Piela, Piotr;Michalowski, Tadeusz;Miltko, Renata;Szewczyk, Krzysztof W.;Sikora, Radoslaw;Grzesiuk, Elzbieta;Sikora, Anna
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.7
    • /
    • pp.1092-1100
    • /
    • 2010
  • Bacteria, fungi, and protozoa inhabiting the rumen, the largest chamber of the ruminants' stomach, release large quantities of hydrogen during the fermentation of carbohydrates. The hydrogen is used by coexisting methanogens to produce methane in energy-yielding processes. This work shows, for the first time, a fundamental possibility of using a hydrogen-rich fermentation gas produced by selected rumen ciliates to feed a low-temperature hydrogen fuel cell. A biohydrogen fuel cell (BHFC) was constructed consisting of (i) a bioreactor, in which a hydrogen-rich gas was produced from glucose by rumen ciliates, mainly of the Isotrichidae family, deprived of intra- and extracellular bacteria, methanogens, and fungi; and (ii) a chemical fuel cell of the polymer-electrolyte type (PEFC). The fuel cell was used as a tester of the technical applicability of the fermentation gas produced by the rumen ciliates for power generation. The average estimated hydrogen yield was ca. 1.15 mol $H_2$ per mole of fermented glucose. The BHFC performance was equal to the performance of the PEFC running on pure hydrogen. No fuel cell poisoning effects were detected. A maximum power density of $1.66\;kW/m^2$ (PEFC geometric area) was obtained at room temperature. The maximum volumetric power density was $128\;W/m^3$ but the coulombic efficiency was only ca. 3.8%. The configuration of the bioreactor limited the continuous operation time of this BHFC to ca. 14 h.