• 제목/요약/키워드: Hydrogen effect

검색결과 2,878건 처리시간 0.027초

활성탄의 기공도와 수소홀착능 사이의 관계 (The Relationships between the Porosity of Activated Carbon and Hydrogen Adsorption Capacity)

  • 진향교
    • 한국수소및신에너지학회논문집
    • /
    • 제14권4호
    • /
    • pp.305-312
    • /
    • 2003
  • A study is presented of the adsorption capacity of a number of different activated carbons for hydrogen at 100 bar aad 298 K. The hydrogen adsorption isotherm was measured by isothermal gravimetric analysis, using a microbalance. The effect of activated carbon's porosity on hydrogen adsorption capacity is surveyed. It is concluded that hydrogen adsorption capacity of activated carbon is lineally increased according to the increase of specific surface area and total pore volume, It seems that microporosity is more contributive than mesoporosity. Most of the adsorbed quantity is due to physical adsorption and chemisorption is negligible, In this work, 0.79 wt.% of hydrogen adsorption capacity is reached.

Hydrogen Diffusion in APX X65 Grade Linepipe Steels

  • Park, Gyu Tae;Koh, Seong Ung;Kim, Kyoo Young;Jung, Hwan Gyo
    • Corrosion Science and Technology
    • /
    • 제5권4호
    • /
    • pp.117-122
    • /
    • 2006
  • Hydrogen permeation measurements have been carried out on API X65 grade linepipe steel. In order to study the effect of steel microstructure on hydrogen diffusion behavior in linepipe steel, the accelerated cooling condition was applied and then three different kinds of microstructures were obtained. Hydrogen permeation measurement has been performed in reference to modified ISO17081 (2004) and ZIS Z3113 method. Hydrogen trapping parameters in these steels were evaluated in terms of the effective diffusivity ($D_{eff}$), permeability ($J_{ss}L$) and the amount of diffusible hydrogen. In this study, microstructures which affect both hydrogen trapping and diffusion were degenerated pearlite (DP), acicular ferrite (AF), bainite and martensite/austenite constituents (MA). The low $D_{eff}$ and $J_{ss}L$ mean that more hydrogen can be trapped reversibly or irreversibly and the corresponding steel microstructure is dominant hydrogen trapping site. The large amount of diffusible hydrogen means that corresponding steel microstructure is predominantly reversible. The results of this study suggest that the hydrogen trapping efficiency increases in the order of DP, bainite and AF, while AF is the most efficient reversible trap.

일정 변형률 시험에 의한 TRIP강의 수소 지연파괴 특성연구 (Study on the Hydrogen Delayed Fracture Property of TRIP Steel by Slow Strain Rate Testing Method)

  • 조정현;이종권
    • Corrosion Science and Technology
    • /
    • 제10권4호
    • /
    • pp.131-135
    • /
    • 2011
  • The demands of high-strength steel have been steadily increased to reduce the weight of vehicles. Although the TRIP steel has been the promising candidate material for the purpose, high strength hinders the application due to the susceptibility to hydrogen delayed fracture in the corrosive environment. Moreover, the testing method was not specified in the ISO standards. In this work, the test method to evaluate the susceptibility of hydrogen delayed fracture was studied by slow strain rate testing technique. The four test experimental parameters were studied : strain rate, hydrogen charging time, holding time after hydrogen charging, and holding time after cadmium plating. The steel was fractured by hydrogen in case the strain rate was in the range of $1{\times}10^{-4}{\sim}5{\times}10^{-7}/sec$. It was confirmed that the slow strain rate test is effective method to evaluate the susceptibility to hydrogen delayed fracture. The holding time over 24 hrs after hydrogen charging, nullified the hydrogen effect, that is, the specimen was no more susceptible to hydrogen after 24 hrs even though the specimen was fully hydrogen-charged. Moreover, cadmium electroplating could not prevent from diffusing out the hydrogen from the steel in the experiment. The effective experimental procedures were discussed.

불활성기체용해-열전도도검출법에 의한 수소분석시 티타늄 및 지르코늄-2.5니오븀 시료의 매질효과 (Matrix effect of Ti and Zr-2.5Nb sample for hydrogen analysis by Inert Gas Fusion-Thermal Conductivity Detection(IGF-TCD) Method)

  • 박순달;최계천;김정석;조기수;김종구;김원호
    • 분석과학
    • /
    • 제16권4호
    • /
    • pp.261-268
    • /
    • 2003
  • 불활성기체용해-열전도도검출법에 의한 수소분석시 매질효과를 조사하기 위해 티타늄 및 지르코늄-2.5니오븀 매질의 수소 표준물질 및 수소기체 주입에 의한 교정계수를 측정하였다. 또한 주석 조연제를 사용하지 않고 티타늄 및 지르코늄-2.5니오븀 매질 수소 표준물질의 수소 추출효율을 조사하였다. 수소기체 주입에 의한 수소분석기의 보정에 대해 지르코늄-2.5니오븀 매질 수소표준물질의 그것은 2~3% 높았으며, 티타늄 매질의 수소 표준물질은 약 14% 높은 값을 주었다. 교정계수 측정결과에 의하면 티타늄 매질 시료의 수소추출 효율이 지르코늄-2.5니오븀 매질 시료에 비해 약 12% 낮을 것으로 예상된다. 주석을 사용하지 않았을 때 티타늄 및 지르코늄-2.5니오븀매질 수소 표준물질의 수소 회수율은 약 70% 이었으며, 티타늄의 수소 회수율이 지르코늄-2.5니오븀 보다 낮았다.

금속수소화물 수소 저장 용기 내부의 수소흡장에 대한 수치해석적 연구 (Numerical Study of Hydrogen Absorption in a Metal Hydride Hydrogen Storage Vessel)

  • 남진무;강경문;주현철
    • 한국수소및신에너지학회논문집
    • /
    • 제21권4호
    • /
    • pp.249-257
    • /
    • 2010
  • In this paper, a three-dimensional hydrogen absorption model is developed to precisely study hydrogen absorption reaction and resultant heat and mass transport phenomena in metal hydride hydrogen storage vessels. The 3D model is first experimentally validated against the temperature evolution data available in the literature. In addition to model validation, the detailed simulation results shows that at the initial absorption stage, the vessel temperature and H/M ratio distributions are uniform throughout the entire vessel, indicating that the hydrogen absorption is so efficient during the early hydriding process and thus local cooling effect is not influential. On the other hand, nonuniform distributions are predicted at the latter absorption stage, which is mainly due to different degrees of cooling between the vessel wall and core regions. This numerical study provides the fundamental understanding of detailed heat and mass transfer phenomena during hydrogen absorption process and further indicates that efficient design of storage vessel and cooling system is critical to achieve fast hydrogen charging and high hydrogen storage efficiency.

Multi-wall 탄소나노튜브의 수소 저장 특성 (Hydrogen adsorption properties of multi-walled carbon nanotubes)

  • 황준연;이상호;심규성;김종원
    • 한국수소및신에너지학회논문집
    • /
    • 제12권1호
    • /
    • pp.65-73
    • /
    • 2001
  • Carbon nanotubes were prepared by catalytic decomposition of $CH_4$ using Ni-MgO catalyst at various temperatures. $H_2$ effect on crystallinity and morphology during the synthesis of carbon nanotubes was investigated. The crystallinity and morphology were characterized by SEM, TEM, XRD, TGA, and Raman spectroscopy. In addition, the hydrogen adsorption properties were evaluated by PCT measurement in a hydrogen pressure range between 1 and 120 bar. The optimal synthesis temperature of carbon nanotubes was elevated in the presence of $H_2$, although significant difference of carbon nanotube morphology was not found. It is believed that hydrogen served as self-cleaner mops the amorphous carbon on the catalyst surface. It is proved that the carbon nanotubes have multi-walled structure, short length with a outer diameter of 20 ~40nm and open tips after elimination of the catalyst. The amount of hydrogen adsorbed in carbon nanotubes is increased as the pressure of hydrogen is increased and reaches 1.3 wt % under the hydrogen pressure of 120 bar at room temperature.

  • PDF

Hydrogen Evolution Ability of Selected Pure Metals and Galvanic Corrosion Behavior between the Metals and Magnesium

  • Luo, Zhen;Song, Kaili;Li, Guijuan;Yang, Lei
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권4호
    • /
    • pp.323-329
    • /
    • 2020
  • The cathodic hydrogen evolution ability of different pure metals and their long term galvanic corrosion behavior with pure Mg were investigated. The hydrogen evolution ability of pure Ti, Al, Sn and Zr is weak, while that of Fe, W, Cr, and Co is very strong. Initial polarization test could not completely reveal the cathodic behavior of the tested metals during long term corrosion. The cathodic hydrogen evolution ability may vary significantly in the long term galvanic tests for different metals, especially for Al whose cathodic current density reduced to 1/50 of the initial value. The anodic polarization shows that Al and Sn as alloying elements are supposed to provide relatively good passive effect for Mg alloy, while Ag can provide a slight passive effect and Zn has little passive effect.

Effect of the Saponin Fraction of Korean Ginseng on the Ethanol Metabolism in the Animal Body

  • Joo, Chung-No;Kwak, Hahn-Shik
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1987년도 Proceedings of Korea-Japan Panax Ginseng Symposium 1987 Seoul Korea
    • /
    • pp.47-58
    • /
    • 1987
  • Ethanol exerts different effects on hepatic cellular metabolism, depending mainly on the duration of its intake. In the presence of ethanol following an acute load, a number of hepatic functions are inhibited, including lipid oxidation and microsomal drug metabolism. In its early stages, chronic ethanol consumption produces adaptive metabolic changes in the endoplasmic reticulum which result in increased metabolism of ethanol and drugs and accelerated lipoprotein production. Prolongation of ethanol intake may result in injurious hepatic lesions such as alcoholic hepatitis and cirrhosis A number of such metabolic effects of ethanol are directly linked to the two major products of its oxidation; hydrogen and acetaldehyde. The excess hydrogen from ethanol unbalances the liver cell's chemistry. In the presence of excess hydrogen ions the process is turned in a different direction. In this study, it was attempted to observe the effect of ginseng saponins on alcohol Oehydrogenase(ADH), aldehyde dehydrogenase(ALDH) and microsomal ethanol oxidizing system(MEOS) in vivo as well as in vitro. Furthermore, the effect of ginseng saponin on the hydrogen balance in the liver and the hepatic cellular distribution of (1-14C) ethanol, its incorporation into acetaldehyde and lipids was also investigated. It seemed that ginseng saponin stimulated the above enzymes and other related enzymes in ethanol metabolism, resulting in a rapid removal of acetaldehyde and excess hydrogen from the animal body,

  • PDF

ZnO 박막의 전기적 구조적 특성에 미치는 수소 분압비의 영향 (Effect of Hydrogen Partial Pressure Ratio on Electrical and Structural Properties of ZnO Thin Film)

  • 이성훈;신민근;변응선;김도근;전상조;구본흔
    • 한국표면공학회지
    • /
    • 제39권6호
    • /
    • pp.250-254
    • /
    • 2006
  • Effect of hydrogen partial pressure ratio on the structural and electrical properties of highly c-axis oriented ZnO films deposited by oxygen ion-assisted pulsed filtered vacuum arc at a room temperature was investigated. The hydrogen partial pressure ratio were $1.4%\sim9.8%$ at 40% oxygen pressure ratio. The conductivity of ZnO:H films was increased from 1.4% up to 4.2% due to relatively high carrier mobility caused by improvement of crystallinity While the conductivity of ZnO:H films were decreased over than 4.2% and (0002) orientation was also deteriorated. The lowest resistivity of ZnO:H films was $2.5{\times}10^{-3}\;{\Omega}{\cdot}cm$ at 4.2% of hydrogen pressure ratio. Transmittance of ZnO:H films in visible range was 85% which is lower than that of undoped ZnO films because of declined preferred orientation.

$H_2O_2$ 유도 8-OH2'dG 생성 및 DNA Single Strand Break에 미치는 Galangin의 억제효과 (Suppressive Effect of Galangin on the Formation of 8-OH2'dG and DNA Single Strand Breaks by Hydrogen Peroxide)

  • 김수희;허문영
    • 약학회지
    • /
    • 제54권1호
    • /
    • pp.32-38
    • /
    • 2010
  • The aim of this study was to evaluate the effect of galangin towards hydrogen peroxide-induced DNA damage. The calf thymus DNA and Chinese Hamster Lung (CHL) cells were used to measure 8-hydroxy-2'-deoxyguanosine(8-OH2'dG) as an indicator of DNA oxidative damage using high performance liquid chromatography with electrochemical detection. Hydrogen peroxide in the presence of Fe(II) ion induced the formation of 8-OH2'dG in both calf thymus DNA and CHL cells. The DNA damage effects were enhanced by increasing the concentration of Fe(II) ion and inhibited by galangin. In the single cell gel electrophoresis (Comet assay), galangin and dl-a-tocopherol showed an inhibitory effect in CHL on hydrogen peroxide induced DNA single strand breaks. Galangin showed more potent activity than dl-$\alpha$-tocopherol under our experimental conditions. These results indicate that galangin can modify the action mechanisms of the oxidative DNA damage and may act as chemopreventive agents against oxidative stress.