Browse > Article

Matrix effect of Ti and Zr-2.5Nb sample for hydrogen analysis by Inert Gas Fusion-Thermal Conductivity Detection(IGF-TCD) Method  

Park, Soon-Dal (Department of Nuclear Chemistry Research, Korea Atomic energy Research Institute)
Choi, Ke-Chon (Department of Nuclear Chemistry Research, Korea Atomic energy Research Institute)
Kim, Jung-Suk (Department of Nuclear Chemistry Research, Korea Atomic energy Research Institute)
Kim, Jong-Gu (Department of Nuclear Chemistry Research, Korea Atomic energy Research Institute)
Joe, Kih-Soo (Department of Nuclear Chemistry Research, Korea Atomic energy Research Institute)
Kim, Won-Ho (Department of Nuclear Chemistry Research, Korea Atomic energy Research Institute)
Publication Information
Analytical Science and Technology / v.16, no.4, 2003 , pp. 261-268 More about this Journal
Abstract
To investigate the matrix effect of sample for hydrogen analysis by inert gas fusion-thermal conductivity detection, calibration factor for the hydrogen analyser of the inert gas fusion-thermal conductivity detection method was measured with hydrogen standard materials in Ti, Zr-2.5Nb and by hydrogen gas dosing method. Also the hydrogen extraction efficiency for the different sample matrix, Ti and Zr-2.5Nb, was evaluated without adding tin flux. The calibration factor of the hydrogen analyser which was calibrated by hydrogen standard material in Zr-2.5Nb and Ti was 2~3% and 14% higher than that by hydrogen gas dosing method, respectively. Based on the results of calibration factor measurement, it could be concluded that the hydrogen extraction efficiency of the Ti matrix sample will be 12% lower than that of the Zr-2.5Nb. And according to the experimental results of hydrogen recovery test by no tin flux, the hydrogen recovery percentage of the Ti and Zr-2.5Nb matrix sample was about 70% but the recovery rate of Ti matrix sample was slightly lower than that of Zr-2.5Nb.
Keywords
Ti; Zr-2.5Nb; hydrogen; matrix effect; Inert Gas Fusion-Thermal Conductivity Detection(IGF-TCD);
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. M. Melnick, L. L. Lewis and B. D. Holt., 'Determination of Gaseous Elements in Metals,' Chemical analysis Vol., 40, 289, A Wiley-In terscience publication John Wiley & Sons, U. S. A., 1974.
2 和田行男, 秋山繁夫, 落合健一, 朝倉祥郞, 堤健一, 分析機器, 14, 463(1975).
3 R. E. Taylor, Analytica. Chimica. Acta, 21, 549(1959).
4 H. H. Chen-Mayer, D. F. R. Mildner, and G. P. Lamaze, MIRS Spring meeting in San Francisco, U. S. A., 1-6, 13-17, Apr, 1998.
5 ASTM, 'Standard Test Method for Determination of Hydrogen in Titanium and Titanium Alloys by the Inert Gas Fusion Thermal Conductivity Method,' E 1447(2000).
6 A. L. Beach and W. G. Guldner, Anal. Chem., 31, 1722(1959).
7 K. Watanabe and M. Ouchi, Bunseki Kagaku, 34, 677(1985).
8 G. A. Bickel, F. C. Sopchyshyn, G. A. McRae, Z. H. Walker and L. W. Green, Nucl. Instru. and Meth. in Phy. Res., B 140, 217(1998).
9 D. Lawrenz, LECO, U. S. A., Personal communication.
10 V. V. Kvardakov, J. of. Appl. Phy., 83, 3876(1998).
11 S. D. Park, K. S. Choi, J. G. Kim, K. S. Joe and W. H. Kim, Anal. Sci. & Tech, 12, 490(1999).
12 G. A. Bickell and C. E. Coleman, Atomic Energy of Canada Limited(AECL)-Chalk River Laboratories, Personal communication.
13 T. D. Mckinley, Trans. of the Metall. Soc. of AIME, Aug. 563, 1958.
14 D. G. Swinburn, J. of. Iron & Steel Inst., Aug, 620(1971).
15 T. J. Shultz, H. M. Adams and L. W. Green, Anal. Chim. Acta., 316, 337(1995).
16 E. A. Gulbransen and K. F. Andrew, Electrochem. Tech., Sept-Oct, 471(1967).
17 LECO(R) Corporation, 'Instruction manual for LECO(R) RH-404 Hydrogen Determinator,' USA (1989).
18 J. G. Van Raaphorst and A. Kout, Fresenius, Z. Anal. Chem., 291, 324(1978).
19 M. J. Tzeciak., Anal. Chem., 32, 72(1960).
20 Y. S. Sayi, P. R. Ramakumar, C. S. Yadav, P. S. Sankaran, G. C. Chappru, V. Venugopal, S. K. Aggarwal, H. C. Jain and D. D. Sood, Nuclear and Radiochemistry Symposium, Mumbai, India, 222-223, 21-24 Jan, 1997.