• Title/Summary/Keyword: Hydrogen detonation

Search Result 34, Processing Time 0.022 seconds

A Study on Mitigating Accidents for Liquid Hydrogen (액체수소 사고피해 완화기술에 대한 연구)

  • Jo, Young-Do;Kim, Jin-Jun
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.29-33
    • /
    • 2012
  • This paper is an attempt to give a concise overview of the state-of-the-art in the recent liquid hydrogen safety researches with unwanted event progress. The vessel of liquified hydrogen may fail and liquid hydrogen spilled. The hydrogen will immediately start to evaporate above a pool and make a hydrogen cloud. The cloud will disperse and can produce a vapor cloud explosion. The vessel containing the liquid hydrogen may not be able to cope with the boil-off due to heat influx, especially in case of a fire, and a BLEVE may occur. In equipment where it exists as compressed gas, a leak generates a jet of gas that can self-ignite immediately or after a short delay and produce a jet flame, or in case it ignites at a source a certain distance from the leak (delayed ignition), a flash fire occurs in the open and with confinement a deflagration or even detonation may develop. The up-to-date knowledge in these events, recent progress and future research are discussed in brief.

INVESTIGATIONS ON THE RESOLUTION OF SEVERE ACCIDENT ISSUES FOR KOREAN NUCLEAR POWER PLANTS

  • Kim, Hee-Dong;Kim, Dong-Ha;Kim, Jong-Tae;Kim, Sang-Baik;Song, Jin-Ho;Hong, Seong-Wan
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.617-648
    • /
    • 2009
  • Under the government supported long-term nuclear R&D program, the severe accident research program at KAERI is directed to investigate unresolved severe accident issues such as core debris coolability, steam explosions, and hydrogen combustion both experimentally and numerically. Extensive studies have been performed to evaluate the in-vessel retention of core debris through external reactor vessel cooling concept for APR1400 as a severe accident management strategy. Additionally, an improvement of the insulator design outside the vessel was investigated. To address steam explosions, a series of experiments using a prototypic material was performed in the TROI facility. Major parameters such as material composition and void fraction as well as the relevant physics affecting the energetics of steam explosions were investigated. For hydrogen control in Korean nuclear power plants, evaluation of the hydrogen concentration and the possibility of deflagration-to-detonation transition occurrence in the containment using three-dimensional analysis code, GASFLOW, were performed. Finally, the integrated severe accident analysis code, MIDAS, has been developed for domestication based on MELCOR. The data transfer scheme using pointers was restructured with the modules and the derived-type direct variables using FORTRAN90. New models were implemented to extend the capability of MIDAS.

NUMERICAL ANALYSIS OF THE HYDROGEN-STEAM BEHAVIOR IN THE APR1400 CONTAINMENT DURING A HYPOTHETICAL TOTAL LOSS OF FEED WATER ACCIDENT (APR1400의 급수완전상실사고 시 격납건물 내에서 수소와 수증기의 3차원 거동에 대한 수치해석)

  • Kim Jongtae;Hong Seong-Wan;Kim Sang-Baik;Kim Hee-Dong
    • Journal of computational fluids engineering
    • /
    • v.10 no.3 s.30
    • /
    • pp.9-18
    • /
    • 2005
  • During a hypothetical severe accident in a nuclear power plant (NPP), hydrogen is generated by the active reaction of fuel-cladding and steam in the reactor pressure vessel and released with steam into the containment. In order to mitigate hydrogen hazards possibly occurred in the NPP containment, hydrogen mitigation system (HMS) is usually adopted. The design of the next generation NPP (APR1400) designed in Korea specifies 26 passive autocatalytic recombiners and 10 igniters installed in the containment for the hydrogen mitigation. in this study, the analysis of the hydrogen and steam behavior during a total lose of feed water (TLOFW) accident in the APR1400 containment has been conducted by using the CFD code GASFLOW. During the accident, a huge amount of hot water, steam, and hydrogen is released in the in-containment refueling water storage tank (IRWST). The current design of the APR1400 includes flap-type dampers at the IRWST vents which are operated depending on the pressure difference between inside and outside of the IRWST. it was found that the flaps strongly affects the flow structure of the steam and hydrogen in the containment. The possibilities of a flame acceleration and transition from deflagration to detonation (DDT) were evaluated by using Sigma-Lambda criteria. Numerical results indicate the DDT possibility could be heavily reduced in the IRWST compartment when the flaps are installed.

Theoretical Investigation on the Structure, Detonation Performance and Pyrolysis Mechanism of 4,6,8-Trinitro-4,5,7,8-tetrahydro -6H-furazano[3,4-f]-1,3,5-triazepine

  • Li, Xiao-Hong;Zhang, Rui-Zhou;Zhang, Xian-Zhou
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1479-1484
    • /
    • 2014
  • Based on the full optimized molecular geometric structures at B3LYP/cc-pvtz method, a new designed compound, 4,6,8-trinitro-4,5,7,8-tetrahydro-6H-furazano[3,4-f ]-1,3,5-triazepine was investigated in order to look for high energy density compounds (HEDCs). The analysis of the molecular structure indicates that the seven-membered ring adopts chair conformation and there exist intramolecular hydrogen bond interactions. IR spectrum and heat of formation (HOF) were predicted. The detonation velocity and pressure were evaluated by using Kamlet-Jacobs equations based on the theoretical density and condensed HOF. The bond dissociation energies and bond orders for the weakest bonds were analyzed to investigate the thermal stability of the title compound. The results show that $N_1-N_6$ bond is the trigger bond. The crystal structure obtained by molecular mechanics belongs to $Pna2_1$ space group, with lattice parameters Z = 4, a = 15.3023 ${\AA}$, b = 5.7882 ${\AA}$, c = 11.0471 ${\AA}$, ${\rho}=2.06gcm^{-3}$. In addition, the analysis of frontier molecular orbital shows the title compound has good stability and high chemical hardness.

Mechanisms of Oblique Shock-Induced Combustion Instability

  • Choi, Jeong-Yeol;Jeung, In-Seuck
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.23-30
    • /
    • 2002
  • Instability of oblique detonation waves (ODW) at off-attaching condition was investigated through a series of numerical simulations. Two-dimensional wedge of finite length was considered in $H_2/O_2/N_2$ mixtures at superdetonative condition. Numerical simulation was carried out with a compressible fluid dynamics code and a detailed hydrogen-oxygen combustion mechanism. Present result reveals that there is a chemical kinetic limit of the ODW detachment, in addition to the theoretical limit predicted by Rankine-Hugoniot theory with equilibrium chemistry. Result also presents that ODW still attaches at a wedge as an oblique shock-induced flame showing periodically unstable motion, if the Rankine-Hugoniot limit of detachment is satisfied but the chemical kinetic limit is not. Mechanism of the periodic instability is considered as interactions of shock and reaction waves coupled with chemical kinetic effects. From the investigation of characteristic chemical time, condition of the periodic instability is identified as follows; at the detaching condition of the Rankine-Hugoniot theory, (1) flow residence time is smaller than the chemical characteristic time, behind the detached shock wave with heat addition, (2) flow residence time should be greater than the chemical characteristic time, behind an oblique shock wave without heat addition.

  • PDF

Analysis of fission product reduction strategy in SGTR accident using CFVS

  • Shin, Hoyoung;Kim, Seungwoo;Park, Yerim;Jin, Youngho;Kim, Dong Ha;Jae, Moosung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.812-824
    • /
    • 2021
  • In order to reduce risks from the Steam Generator Tube Rupture (SGTR) accident and to meet safety targets, various measures have been analyzed to minimize the amount of fission product (FP) release. In this paper, we propose an introduction of a Containment Filtered Venting System (CFVS) connected to the steam generator secondary side, which can reduce the amount of FP release while minimizing adverse effects identified in the previous studies. In order to compare the effect of new equipment with the existing strategy, accident simulations using MELCOR were performed. As a result of simulations, it is confirmed that CFVS operation lowers FP release into the environment, and the release fractions are lower (minimum 0.6% of the initial inventory for Cs) than that of the strategy which intends to depressurize the primary system directly (minimum 15.2% for Cs). The sensitivity analyses identify that refill of the CFVS vessel is a dominant contributor reducing the amount of FP released. As the new strategy has the possibility of hydrogen combustion and detonation in CFVS, the installation of an igniter inside the CFVS vessel may be considered in reducing such hydrogen risk.

Experimental setup for elemental analysis using prompt gamma rays at research reactor IBR-2

  • Hramco, C.;Turlybekuly, K.;Borzakov, S.B.;Gundorin, N.A.;Lychagin, E.V.;Nehaev, G.V.;Muzychka, A. Yu;Strelkov, A.V.;Teymurov, E.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2999-3005
    • /
    • 2022
  • The new experimental setup has been built at the 11b channel of the IBR-2 research reactor at FLNP, JINR, to study the elemental composition of samples by registration of prompt gamma emission during thermal neutron capture. The setup consists of a curved mirror neutron guide and a radiation-resistant HPGe high-purity germanium detector. The detector is surrounded by lead shielding to suppress the natural background gamma level. The sample is placed in a vacuum channel and surrounded by a LiF shield to suppress the gamma background generated by scattered neutrons. This work presents characteristics of the experimental setup. An example of hydrogen concentration determining in a diamond powder made by detonation synthesis is given and on its basis, the sensitivity of the setup is calculated being ~4 ㎍.

3D Explosion Analyses of Hydrogen Refueling Station Structure Using Portable LiDAR Scanner and AUTODYN (휴대형 라이다 스캐너와 AUTODYN를 이용한 수소 충전소 구조물의 3차원 폭발해석)

  • Baluch, Khaqan;Shin, Chanhwi;Cho, Yongdon;Cho, Sangho
    • Explosives and Blasting
    • /
    • v.40 no.3
    • /
    • pp.19-32
    • /
    • 2022
  • Hydrogen is a fuel having the highest energy compared with other common fuels. This means hydrogen is a clean energy source for the future. However, using hydrogen as a fuel has implication regarding carrier and storage issues, as hydrogen is highly inflammable and unstable gas susceptible to explosion. Explosions resulting from hydrogen-air mixtures have already been encountered and well documented in research experiments. However, there are still large gaps in this research field as the use of numerical tools and field experiments are required to fully understand the safety measures necessary to prevent hydrogen explosions. The purpose of this present study is to develop and simulate 3D numerical modelling of an existing hydrogen gas station in Jeonju by using handheld LiDAR and Ansys AUTODYN, as well as the processing of point cloud scans and use of cloud dataset to develop FEM 3D meshed model for the numerical simulation to predict peak-over pressures. The results show that the Lidar scanning technique combined with the ANSYS AUTODYN can help to determine the safety distance and as well as construct, simulate and predict the peak over-pressures for hydrogen refueling station explosions.

Numerical Investigation of Ram Accelerator Flow Field in Expansion Tube (Expansion Tube 내의 램 가속기 유동장의 수치 연구)

  • 최정열;정인석;윤영빈
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.43-51
    • /
    • 1997
  • Steady and unsteady numerical simulations are conducted for the experiments performed to investigate the ram accelerator flow field by using the expansion tube facility in Stanford University. Navier-Stokes equations for chemically reacting flows are analyzed by fully implicit and time accurate numerical methods with Jachimowski's detailed chemistry model for hydrogen-air combustion involving 9 species and 19 reaction steps. Although the steady state assumption shows a good agreement with the experimental schlieren and OH PLIF images for the case of $2H_2$+$O_2$+$17N_2$, it fails in reproducing the combustion region behind the shock intersection point shown in the case of $2H_2$+$O_2$+$12N_2$, mixture. Therefore, an unsteady numerical simulation is conducted for this case and the result shows all the detailed flow stabilization process. The experimental result is revealed to be an instantaneous result during the flow stabilization process. The combustion behind the shock intersection point is the result of a normal detonation formed by the intersection of strong oblique shocks that exist at early stage of the stabilization process. At final stage, the combustion region behind the shock intersection point disappears and the steady state result is retained. The time required for stabilization of the reacting flow in the model ram accelerator is found to be very long in comparison with the experimental test time.

  • PDF

Numerical Simulation of Shock-Induced Combustion on Adaptive Mesh (적응격자를 이용한 충격파 유도 연소장 해석)

  • Kim, Sang-Hoon;Choi, Jeong-Yeol;Oh, Se-Jomg
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.397-400
    • /
    • 2010
  • Unstructured adaptive grid flow simulation is applied to the calculation of high speed compressible flow of inert and reactive gas mixtures. Computational results are presented for the case of premixed hydrogen-air supersonic flow over a 2-D wedge. In such a configuration, combustion may be triggered behind the oblique shock wave and transition to an oblique detonation wave is eventually obtained. It is shown that the solution adaptive procedure implemented is able to correctly define the important wave front.

  • PDF