DOI QR코드

DOI QR Code

A Study on Mitigating Accidents for Liquid Hydrogen

액체수소 사고피해 완화기술에 대한 연구

  • Jo, Young-Do (Institute of Gas Safety Technology, Korea Gas Safety Corporation) ;
  • Kim, Jin-Jun (Institute of Gas Safety Technology, Korea Gas Safety Corporation)
  • 조영도 (한국가스안전공사, 가스안전연구원) ;
  • 김진준 (한국가스안전공사, 가스안전연구원)
  • Received : 2012.07.18
  • Accepted : 2012.12.21
  • Published : 2012.12.31

Abstract

This paper is an attempt to give a concise overview of the state-of-the-art in the recent liquid hydrogen safety researches with unwanted event progress. The vessel of liquified hydrogen may fail and liquid hydrogen spilled. The hydrogen will immediately start to evaporate above a pool and make a hydrogen cloud. The cloud will disperse and can produce a vapor cloud explosion. The vessel containing the liquid hydrogen may not be able to cope with the boil-off due to heat influx, especially in case of a fire, and a BLEVE may occur. In equipment where it exists as compressed gas, a leak generates a jet of gas that can self-ignite immediately or after a short delay and produce a jet flame, or in case it ignites at a source a certain distance from the leak (delayed ignition), a flash fire occurs in the open and with confinement a deflagration or even detonation may develop. The up-to-date knowledge in these events, recent progress and future research are discussed in brief.

이 연구에서는 최근의 액체수소안전관련 연구현황을 간략히 살펴보고자 한다. 액체수소 저장용기가 파손되어 액체수소가 누출될 수 있다. 누출된 액체수소는 풀을 형성하고 증발하여 수소증기 운을 형성한 뒤 증기운 폭발이 일어날 수 있다. 액체수소를 저장하고 있는 용기가 외부로부터 유입되는 열에 의하여 증발하는 가스를 처리하지 못할 경우에는 BLEVE가 발생할 수 있다. 압축된 수소가스가 있는 시설에서는 수소누출에 의한 제트화제가 발생하고 지연점화에 의하여 개방공간에서 플래시 화재 및 폭발이 발생할 수 있다. 이러한 여러 가지 사건에 대하여 최근의 기술개발과 향후연구개발 방향에 대하여 간략히 살펴보았다.

Keywords

References

  1. Dienhart B. Ausbreitung und Verdampfung von fluessigem Wasserstoff auf Wasser und festem Untergrund, Research Center Juelich Report No. Juel-3155;1995
  2. Brandeis J, Ermak DL. Numerical simulation of liquefied fuel spills: I. Instantaneous release into a confined area. Int J Numer Methods Fluids 1983;3:333-45 II. Instantaneous and continuous LNG spills on an unconfined water surface. Int J Numer Methods Fluids 1983;3:347-61 https://doi.org/10.1002/fld.1650030405
  3. Zabetakis MG, Furno AL, Martindill GH. Explosion hazards of liquid hydrogen. Adv Cryog Eng 1961;6:185-94
  4. Chirivella JE, Witcofski RD. Experimental results from fast 1500-Gallon $LH_{2}$ spills. AIChE Symp Ser 1986;82(251):120-40
  5. S. S. Han and S. S. Doo, "The Effect of Hydrogen Energy", in S. S. Se(Edi.)", Hydrogen and Human Life", Hydrogen-press, Korea, 2002, pp. 105-203
  6. K. Verfondern, B. Dienhart, "Pool spreading and vaporization of liquid hydrogen", International Journal of Hydrogen Energy 32, 2007, 2106-2117 https://doi.org/10.1016/j.ijhydene.2007.04.015
  7. Prankul Middha, Olav R. Hansen, Idar E. Storvik, "Validation of CFD-model for hydrogen dispersion", Journal of Loss Prevention in the Process Industries, 22, 2009, 1034-1038 https://doi.org/10.1016/j.jlp.2009.07.020
  8. Matsuura K, Nakano M, Ishimoto J. "Forced ventilation for sensing-based risk mitigation of leaking hydrogen in a partially open space", Int J Hydrogen Energy 2010;35(10): 4776-86 https://doi.org/10.1016/j.ijhydene.2010.02.068
  9. Kazuo Matsuura, Masami Nakano, Jun Ishimoto. "Sensing-based risk mitigation control of hydrogen dispersion and accumulation in a partially open space with low-height openings by forced ventilation", international journal of hydrogen energy 37 (2012) 1972-1984 https://doi.org/10.1016/j.ijhydene.2011.08.006
  10. C.D. Barley, K. Gawlik, "Buoyancy-driven ventilation of hydrogen from buildings: Laboratory test and model validation", international journal of hydrogen energy 34 (2009) 5592- 5603 https://doi.org/10.1016/j.ijhydene.2009.04.078
  11. Kazuo Matsuura, Masami Nakano, Jun Ishimoto, "Acceleration of hydrogen forced ventilation after leakage ceases in a partially open space", international journal of hydrogen energy, (2012) in print
  12. Tomohiko Imamura, Toshio Mogi, Yuji Wada, "Control of the ignition possibility of hydrogen by electrostatic discharge at a ventilation duct outlet:, international journal of hydrogen energy 34 (2009) 2815-2823 https://doi.org/10.1016/j.ijhydene.2009.01.028
  13. Toshio Mogi, Sadashige Horiguchi, "Experimental study on the hazards of high-pressure hydrogen jet diffusion flames", Journal of Loss Prevention in the Process Industries 22 (2009) 45-51 https://doi.org/10.1016/j.jlp.2008.08.006
  14. Young-Do Jo, "Hazard Distance from Hydrogen Accidents", KIGAS Vol. 16, No. 1, February, 2012
  15. Jeffrey LaChance, "Risk-informed separation distances for hydrogen refueling stations", international journal of hydrogen energy 34 (2009) 5838-5845 https://doi.org/10.1016/j.ijhydene.2009.02.070
  16. Jo Y-D, and Ahn B. J., "Analysis of Hazard Area Associated with Hydrogen Gas Transmission Pipelines", International Journal of Hydrogen Energy 31(14) p2122-2130 (2006) https://doi.org/10.1016/j.ijhydene.2006.01.008
  17. Crowl, D. A., and Jo, Y-D., "The hazards and risk of hydrogen" Journal of Loss Prevention in the Process Industries, 20, 158-164, (2007) https://doi.org/10.1016/j.jlp.2007.02.002
  18. Jo Y-D. and Crowl D.A., "Flame Growth Model for Confined Gas Explosion" Process Safety Progress, 28, 141-146, (2009) https://doi.org/10.1002/prs.10289
  19. Bartknecht, W. (1993). Explosions-Schutz: Grundlagen und Anwendung. New York: Springer.
  20. Jo Y-D. and Crowl D.A., "Explosion Characteristics of Hydrogen-Air Mixtures in a Spherical Vessel", Process Safety Progress, 29(3), 216-223, (2010)
  21. Young-Do Jo, Kyo-Shick Park, "Minimum Amount of Flammable Gas for Explosion with Confined Space", Process Safety Progress, 17 (Nov.), p321-329, 2004
  22. Jeffrey LaChance, Andrei Tchouvelev, Angunn Engebo, "Development of uniform harm criteria for use in quantitative risk analysis of the hydrogen infrastructure", international journal of hydrogen energy 36 (2011) 2381-2388 https://doi.org/10.1016/j.ijhydene.2010.03.139