Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.5.1479

Theoretical Investigation on the Structure, Detonation Performance and Pyrolysis Mechanism of 4,6,8-Trinitro-4,5,7,8-tetrahydro -6H-furazano[3,4-f]-1,3,5-triazepine  

Li, Xiao-Hong (College of Physics and Engineering, Henan University of Science and Technology)
Zhang, Rui-Zhou (College of Physics and Engineering, Henan University of Science and Technology)
Zhang, Xian-Zhou (College of Physics and Information Engineering, Henan Normal University)
Publication Information
Abstract
Based on the full optimized molecular geometric structures at B3LYP/cc-pvtz method, a new designed compound, 4,6,8-trinitro-4,5,7,8-tetrahydro-6H-furazano[3,4-f ]-1,3,5-triazepine was investigated in order to look for high energy density compounds (HEDCs). The analysis of the molecular structure indicates that the seven-membered ring adopts chair conformation and there exist intramolecular hydrogen bond interactions. IR spectrum and heat of formation (HOF) were predicted. The detonation velocity and pressure were evaluated by using Kamlet-Jacobs equations based on the theoretical density and condensed HOF. The bond dissociation energies and bond orders for the weakest bonds were analyzed to investigate the thermal stability of the title compound. The results show that $N_1-N_6$ bond is the trigger bond. The crystal structure obtained by molecular mechanics belongs to $Pna2_1$ space group, with lattice parameters Z = 4, a = 15.3023 ${\AA}$, b = 5.7882 ${\AA}$, c = 11.0471 ${\AA}$, ${\rho}=2.06gcm^{-3}$. In addition, the analysis of frontier molecular orbital shows the title compound has good stability and high chemical hardness.
Keywords
Density functional theory; Thermal stability; Detonation performance; 4,6,8-Trinitro-4,5,7,8-tetrahydro-6H-furazano[3,4-f ]-1,3,5-triazepine; Molecular modelling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Pagoria, P. F.; Lee, G. S.; Mitchell, A. R.; Schmidt, R. D. Thermochim. Acta 2002, 384, 187-204.   DOI   ScienceOn
2 Agrawal, J. P.; Hodgson, R. D. Organic Chemistry of Explosives; John Wiley & Sons: Chichester, 2007.
3 Xiao, H. M. Molecular Orbital Theory for Nitro Compounds; National Defense Industry Press: Beijing, 1993.
4 Jalovy, Z.; Zeman, S.; Suceska, M.; Vavra, P.; Dudek, K.; Rajic, M. J. Energ. Mater. 2001, 19, 219-239.   DOI
5 Cobbledick, R. E.; Small, R. W. H. Acta Crystallogr. B 1972, 30, 1918-1922.
6 Sasada, Y. Molecular and Crystal Structures in Chemistry Handbook; The Chemical Society of Japan: Maruzen, 1984.
7 Willer, R. L. J. Org. Chem. 1984, 49, 5150-5154.   DOI
8 Simpson, R. L.; Urtiew, P. A.; Ornellas, D. L.; Moody, G. L.; Scribner, K. J.; Hoffman, D. M. Propellants, Explos., Pyrotech. 1997, 22, 249-255.   DOI   ScienceOn
9 Sheremetev, A. B.; Khim, Z. R. Mendeleev Chemistry Journal 1997, 41, 43-54.
10 Qiu, L.; Xiao, H. M. J. Hazard. Mater. 2009, 164, 329-336.   DOI
11 Koppes, W. M.; Chaykovsky, M. H.; Adolph, G.; Gilardi, R.; George, C. J. Org. Chem. 1987, 52, 1113-1119.   DOI
12 Willer, R. L.; Moore, D. W. J. Org. Chem 1985, 50, 5123-5127.   DOI
13 Ermakov, A. S.; Serkov, S. A.; Tartakovskii, V. A.; Novikova, T. S.; Khmel'nitskii, L. I.; Geterotsikl, S. K. Chemistry of Heterocyclic Compounds 1994, 30, 976-978.   DOI
14 Willer, R. L.; Henry, R. A. J. Org. Chem. 1988, 53, 5371-5373.   DOI
15 Iyer, S.; Slagg, N. Molecular Aspects in Energetic Materials, in: Structure and Reactivity; VCH Publishers: New York, 1988.
16 Mader, C. L. Detonation Performance, in: Organic Energetic Compounds; Nova Science Publishers: New York, 1996.
17 Dlott, D. D. Fast Molecular Processes in Energetic Materials, in: Energetic Materials. Part 2. Detonation, Combustion; Elsevier: Amsterdam, 2003.
18 Meyer, R.; Kohler, J. A. Homburg, Explosives; Wiley-VCH: Germany, 2007.
19 Kamlet, M. J.; Jacobs S. J. J. Chem. Phys. 1968, 48, 23-35.   DOI
20 Rice, B. M.; Pai, S. V.; Hare, J. Combust. Flame 1999, 118, 445-458.   DOI   ScienceOn
21 Habibollahzadeh, D.; Grice, M. E.; Concha, M. C.; Murray, J. S.; Politzer, P. J. Comput. Chem. 1995, 16, 654-658.   DOI
22 Byrd, E. F. C.; Rice, B. M. J. Phys. Chem. A 2006, 110, 1005-1013.   DOI   ScienceOn
23 Atkins, P. W. Physical Chemistry; Oxford University Press: Oxford, 1982.
24 Politzer, P.; Lane, P.; Murray, J. S. Cent. Eur. J. Energ. Mater 2011, 8, 39-52.
25 Politzer, P.; Murray, J. S. Cent. Eur. J. Energ. Mat. 2011, 8, 209-220.
26 Lu, T. Multiwfn Revision 2.5.2; Beijing Science and Technology: Beijing, 2012.
27 Materials Studio 4.4. Accelrys, 2008.
28 Mighell, A. D.; Himes, V. L.; Rodgers, J. R. Acta Crystallogr. 1983, 39, 737-740.   DOI
29 Wilson, A. J. C. Acta Crystallogr A 1988, 44, 715-724.   DOI
30 Srinivasan, R. Acta Crystallogr A 1992, 48, 917-918.   DOI
31 Sundius, T. MOLVIB: A Program for Harmonic Force Field Calculations, QCPE Program No. 807, 2002.
32 Talawar, M. B.; Sivabalan, R.; Mukundan, T.; Muthurajan, H.; Sikder, A. K.; Gandhe, B. R.; Rao, A. S. J. Hazard. Mater. 2009, 161, 589-607.   DOI   ScienceOn
33 Sundius, T. Vib. Spectrosc. 2002, 29, 89-95.   DOI
34 Politzer, P.; Martinez, J.; Murray, J. S.; Concha, M. C.; Toro- Labbe, A. Mol. Phys. 2009, 107, 2095-2101.   DOI   ScienceOn
35 Zhang, X.-H.; Yun, Z.-H. Explosive Chemistry; National Defence Industry Press: Beijing, 1989.
36 Badgujar, D. M.; Talawar, M. B.; Asthana, S. N.; Mahulikar, P. P. J. Hazard. Mater. 2008, 151, 289-305.   DOI   ScienceOn
37 Ghule, V. D.; Jadhav, P. M.; Patil, R. S.; Radhakrishnan, S.; Soman, T. J. Phys. Chem. A 2010, 114, 498-503.   DOI   ScienceOn
38 Sun, H. J. Phys. Chem. B 1998, 102, 7338-7364.   DOI   ScienceOn
39 Xiao, H. M.; Xu, X. J.; Qiu, L. Theoretical Design of High Energy Density Materials; Science Press: Beijing, 2008.
40 Li, X.-H.; Zhang, R.-Z.; Zhang, X.-Z. J. Hazard. Mater. 2010, 183, 622-631.   DOI
41 Xu, X. J.; Zhu, W. H.; Xiao, H. M. J. Phys. Chem. B 2007, 111, 2090-2097.   DOI   ScienceOn
42 Fleming, J. Frontier Orbitals and Organic Chemical Reactions; Wiley: London, 1976.
43 Li, X.-H.; Zhang, R.-Z.; Yang, X.-D.; Zhang, H. J. Mol. Struct.- THEOCHEM. 2007, 815, 151-156.   DOI
44 Willer, R. L. J. Mex. Chem. Soc. 2009, 53, 108-119.
45 Aleksei, S. B.; Natal'ya, A. S.; Kyrill, S. Y.; Mikhail, A. Y.; Vladimir, T. A. Mendeleev Commun. 2010, 20, 249-252.   DOI
46 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head Gordon, M.; Replogle, E. S.; Pople, J. A. GAUSSIAN 03, Revision B.02, Gaussian Inc.: Pittsburgh PA, 2003.
47 Chernikova, N. Y.; Belsky, V. K.; Zorkii, P. M. J. Struct. Chem. 1990, 31, 661-666.