• Title/Summary/Keyword: Hydrogen cost

Search Result 374, Processing Time 0.026 seconds

Effect of Oxygen Flux on FTO Thin Films Using DC and RF Sputtering

  • Park, Eun Mi;Lee, Dong Hoon;Suh, Moon Suhk
    • Applied Science and Convergence Technology
    • /
    • v.24 no.2
    • /
    • pp.41-46
    • /
    • 2015
  • Transparent conductive oxides (TCOs) are essential material in optoelectronics such as solar cells, touch screens and light emitting diodes. Particularly TCOs are attractive material for infrared cut off film due to their high transparency in the visible wavelength range and high infrared reflectivity. Among the TCO, Indium tin oxide has been widely used because of the high electrical conductivity and transparency in the visible wavelength region. But ITO has several limitations; expensive and low environmental stability. On the other hands, fluorine doped tin oxide (FTO) is well known for low cost, weather ability and stable in acidic and hydrogen. In this study, two different magnetron sputtering techniques with RF and DC modes at room temperature deposition of FTO thin film was conducted. The change of oxygen content is influence on the topography, transmittance and refractive index.

Current Situation of Renewable Energy Resources Marketing and its Challenges in Light of Saudi Vision 2030 Case Study: Northern Border Region

  • AL-Ghaswyneh, Odai Falah Mohammad
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.89-94
    • /
    • 2022
  • The Saudi Vision 2030 defined the directions of the national economy and market towards diversifying sources of income, and developing energy to become less dependent on oil. The study sought through a theoretical review to identify the reality of the energy sector and the areas of investment available in the field of renewable energy. Findings showed that investment in the renewable energy sector is a promising source according to solar, wind, hydrogen, geothermal energy and burning waste than landfill to extract biogas for less emission. The renewable energy sector faces challenges related to technology, production cost, price, quantity of production and consumption, and markets. The study revealed some recommendations providing and suggested electronic marketing system to provide investors and consumers with energy available from renewable sources.

Transition Metal-Based Layered Double Hydroxides for Oxygen Evolution Reaction Catalysts (전이금속 이중층 수산화물 기반 산소발생반응 촉매 연구 동향)

  • Da-Un Han;Gyeongbae Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.358-373
    • /
    • 2024
  • Oxygen evolution reaction is a critical bottleneck for the development of efficient electrochemical hydrogen production because of its sluggish reaction. Among various catalysts, transition metal-based layered double hydroxide has drawn significant attention due to their excellent catalytic properties and cost-effectiveness. This paper begins with basic crystal structures, and then conventional adsorbate evolution mechanism of layered double hydroxide. Strategies for enhancing catalytic properties based on adsorbate evolution mechanism and lattice oxygen mechanism that could surpass theoretical limit of adsorbate evolution mechanism are discussed. This paper ends with a brief discussion on the challenges and future directions of layered double hydroxide-based oxygen evolution reaction catalysts.

Commercializing Technology Development of Bipolar Plates for Polymer Electrolyte Membrane Fuel Cell (고분자연료전지용 분리판 상용화 기술개발)

  • Kim, Jeong-Heon
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.3
    • /
    • pp.409-414
    • /
    • 2011
  • To promote the industry of PEMFC, the commercialization of its parts especially bipolar plate is needed. The bipolar plate is one of key parts for PEMFC, which occupies cost portion of 5~8% in the system. To replace the bipolar plate of machined graphite highly costly, the stamped thin matal or the molded carbon composite has been developed. According to the merits and demerits of each material and its forming process, the stamped metallic plate has been considered to the bipolar plate of PEMFC for automotive, and on the other hand, the molded composite plate has been considered to one for building applications. Hankook Tire Co., Ltd. has developed the carbon composite material and the manufacturing process for the bipolar plates. The developed bipolar plates were proved to be fully applicable to PEMFC of building applications in characteristics and performance, and so government strategic project to develop the mass-production technology for bipolar plates was started and is being conducted by the company. Through the government project for obtaining both the commercialization technology and production capacity for the bipolar plates, the price and the performance of domestic PEMFCs are expected to become competitive in international market.

Internal Flow and Performance Characteristics According to the Runner Gap of a Francis Turbine Model (프란시스 수차 모델의 러너 간극에 따른 내부유동 및 성능 특성)

  • KIM, SEUNG-JUN;CHOI, YOUNG-SEOK;CHO, YONG;CHOI, JONG-WOONG;HYUN, JUNG-JAE;JOO, WON-GU;KIM, JIN-HYUK
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.3
    • /
    • pp.328-336
    • /
    • 2020
  • In the Francis turbine, the leakage flow through the runner gaps which are between the runner and the stator structure influences the internal flow and hydraulic performance. Thus, the investigation for the flow characteristics induced by the runner gaps is important. However, the runner gaps are often disregarded by considering the time and cost of the numerical analysis. Therefore, in this study, the flow characteristics according to runner gaps of the Francis turbine model were investigated including the leakage flow of the runner cone. The three-dimensional unsteady Reynolds-averaged Navier-Stokes analyses were conducted using a scale-adaptive simulation shear stress transport as a turbulence model for observing the influence of the leakage flow on the internal flow and hydraulic performance. The efficiencies were decreased slightly with runner gaps; and the complicated flows were captured in the gaps.

Battery-less Pork Freshness Monitoring Based on High-Efficiency RF Energy Harvesting

  • Nguyen, Nam Hoang;Lam, Minh Binh;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.293-302
    • /
    • 2020
  • Food safety has emerged as a growing concern for human health in recent times. Consuming contaminated food may lead to serious health problems, and therefore, a system for monitoring food freshness that is both non-detrimental to the quality of food and highly accurate is required to ensure that only high-quality fresh food packages are provided to the customers. This paper proposes a method to monitor and detect food quality using a compact smart sensor tag. The smart tag is composed of three ultra-low-power sensors, which monitor four major indicators of food freshness: temperature, humidity, and the concentrations of ammonia and hydrogen sulfide gases. An RF energy scavenging circuit is integrated into the smart sensor tag to harvest energy from radio waves at a high frequency of 13.56 MHz to supply sufficient power to the tag. Experimental results show that the proposed energy harvester can efficiently obtain energy at a distance of approximately 40 cm from a 4 W reader. In addition, the proposed smart sensor tag can operate without any battery, thereby eliminating the requirement of frequent battery replacement and consequently decreasing the cost. Meanwhile, the freshness of preserved pork is continuously monitored under two conditions--room temperature and refrigerator temperature--both of which are the most common temperatures under which food is generally stored. The food-monitoring experiments are conducted over a period of one week using the proposed battery-less tag. Based on the experimental results, the food assessment is classified into four categories: fresh, normal, low, and spoiled.

A Systems Engineering Approach to the Design of Steam Reforming H2 Generation System based on Natural Gas: Case of Iron and Steel making Plant (천연가스 기반 스팀 리포밍 수소 생산 시스템 설계를 위한 시스템엔지니어링 접근방법: 철강생산플랜트를 중심으로)

  • Kim, Joon-Young;Hong, Dae Geun;Suh, Suk-Hwan;Sur, Hwal Won
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.81-93
    • /
    • 2015
  • Steam Reforming H2 Generation (SRH2G) System is a chemical process to produce hydrogen through steam reforming of hydrocarbon. Largely speaking, there are two types of materials for the SRH2G: 1) Oil and coal, and 2)Natural Gas such as shale gas. From the perspective of cost, quality (purity), and environmental burden (pollution), the latter is much more desirable than the former. For this reason, research on SRH2G using natural gas is actively carried out, and implemented and operated in the various industry. In this paper, we develop a natural gas based SRH2G system via systems engineering approach. Specifically, we first derived stakeholder requirements, followed by systems requirements and finally system architecture via a tailored SE process for plant (called Plant Systems Engineering (PSE) process) based on ISO/IEC 15288. The developed method was applied to iron and steel plant as a case study. Through the case study, by the SE approach, we were convinced that a successful system satisfying stakeholders' requirements within the given constraints can be developed, verified and validated.

Two-stage Bioprocesses Combining Dark H2 Fermentation: Organic Waste Treatment and Bioenergy Production (혐기성 수소발효를 결합한 생물학적 2단공정의 유기성폐자원 처리 및 바이오에너지 생산)

  • LEE, CHAE-YOUNG;YOO, KYU-SEON;HAN, SUN-KEE
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.3
    • /
    • pp.247-259
    • /
    • 2015
  • This study was performed to investigate the application of dark $H_2$ fermentation to two-stage bioprocesses for organic waste treatment and energy production. We reviewed information about the two-stage bioprocesses combining dark $H_2$ fermentation with $CH_4$ fermentation, photo $H_2$ fermentation, microbial fuel cells (MFCs), or microbial electrolysis cells (MECs) by using academic information databases and university libraries. Dark fermentative bacteria use organic waste as the sole source of electrons and energy, converting it into $H_2$. The reactions related to dark $H_2$ fermentation are rapid and do not require sunlight, making them useful for treating organic waste. However, the degradation is not complete and organic acids remain. Thus, dark $H_2$ fermentation should be combined with a post-treatment process, such as $CH_4$ fermentation, photo $H_2$ fermentation, MFCs, or MECs. So far, dark $H_2$ fermentation followed by $CH_4$ fermentation is a promising two-stage bioprocess among them. However, if the problems of manufacturing expenses, operational cost, scale-up, and practical applications will be solved, the two-stage bioprocesses combining dark $H_2$ fermentation with photo $H_2$ fermentation, MFCs, or MECs have also infinite potential in organic waste treatment and energy production. This paper demonstrated the feasibility of two-stage bioprocesses combining dark $H_2$ fermentation as a novel system for organic waste treatment and energy production.

Study of Synthesis and Performance of Covalently Cross-Linked SPEEK/Cs-TSiA Composite Membranes with Ceria Contents for Water Electrolysis (수전해용 공유가교 SPEEK/Cs-TSiA 막의 Ceria의 함량에 따른 제조 및 성능 연구)

  • YOON, DAE-JIN;OH, YUN-SUN;SEO, HYEON;MOON, SANG-BONG;CHUNG, JANG-HOON
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.3
    • /
    • pp.212-220
    • /
    • 2015
  • The engineering plastic of sulfonated polyether ether ketone (SPEEK) as a polymer matrix has been developed in this lab to replace Nafion, solid polymer electrolytes of perfluorosulfonic acid membrane which has several flaws such as high cost, and limited operational temperature above $80^{\circ}C$. The SPEEK was prepared in the sulfonation reaction of polyether ether ketone (PEEK). The organic-inorganic blended composite membranes were prepared by sol-gel casting method with loading the highly dispersed ceria and cesium-substituted tungstosilicic acid (Cs-TSiA) with cross-linking agent contents of 0.01 mL. In conclusion, CL-SPEEK/Cs-TSiA/ceria 1% membrane showed the optimum results such as 0.1882 S/cm of proton conductivity at $80^{\circ}C$, and 99.61 MPa of tensile strength which were better than Nafion 117 membrane.

A Review on Prognostics of Polymer Electrolyte Fuel Cells (고분자전해질 연료전지 예지 진단 기술)

  • LEE, WON-YONG;KIM, MINJIN;OH, HWANYEONG;SOHN, YOUNG-JUN;KIM, SEUNG-GON
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.4
    • /
    • pp.339-356
    • /
    • 2018
  • Although fuel cell systems have advantages in terms of electric efficiency and environmental impact compared with conventional power systems, fuel cell systems have not been deployed widely due to their low reliability and high price. In order to guarantee the lifetime of 10 years, which is the commercialization goal of Polymer electrolyte fuel cells (PEFCs), it is necessary to improve durability and reliability through optimized operation and maintenance technologies. Due to the complexity of components and their degradation phenomena, it's not easy to develop and apply the diagnose and prognostic methodologies for PEFCs. The purpose of the paper is to show the current state on PEFC prognostic technology for condition based maintenance. For the prognostic of PEFCs, the model driven method, the data-driven, and the hybrid method can be applied. The methods reviewed in this paper can contribute to the development of technologies to reduce the life cycle cost of fuel cells and increase the reliability through prognostics-based health management system.