DOI QR코드

DOI QR Code

Two-stage Bioprocesses Combining Dark H2 Fermentation: Organic Waste Treatment and Bioenergy Production

혐기성 수소발효를 결합한 생물학적 2단공정의 유기성폐자원 처리 및 바이오에너지 생산

  • LEE, CHAE-YOUNG (Dept. of Civil Engineering.Institute of River Environment Technology, The University of Suwon) ;
  • YOO, KYU-SEON (Dept. of Civil & Environmental Engineering, Jeonju University) ;
  • HAN, SUN-KEE (Dept. of Environmental Health, Korea National Open University)
  • 이채영 (수원대학교 토목공학과.하천환경기술연구소) ;
  • 유규선 (전주대학교 토목환경공학과) ;
  • 한선기 (한국방송통신대학교 환경보건학과)
  • Received : 2015.05.13
  • Accepted : 2015.06.30
  • Published : 2015.06.30

Abstract

This study was performed to investigate the application of dark $H_2$ fermentation to two-stage bioprocesses for organic waste treatment and energy production. We reviewed information about the two-stage bioprocesses combining dark $H_2$ fermentation with $CH_4$ fermentation, photo $H_2$ fermentation, microbial fuel cells (MFCs), or microbial electrolysis cells (MECs) by using academic information databases and university libraries. Dark fermentative bacteria use organic waste as the sole source of electrons and energy, converting it into $H_2$. The reactions related to dark $H_2$ fermentation are rapid and do not require sunlight, making them useful for treating organic waste. However, the degradation is not complete and organic acids remain. Thus, dark $H_2$ fermentation should be combined with a post-treatment process, such as $CH_4$ fermentation, photo $H_2$ fermentation, MFCs, or MECs. So far, dark $H_2$ fermentation followed by $CH_4$ fermentation is a promising two-stage bioprocess among them. However, if the problems of manufacturing expenses, operational cost, scale-up, and practical applications will be solved, the two-stage bioprocesses combining dark $H_2$ fermentation with photo $H_2$ fermentation, MFCs, or MECs have also infinite potential in organic waste treatment and energy production. This paper demonstrated the feasibility of two-stage bioprocesses combining dark $H_2$ fermentation as a novel system for organic waste treatment and energy production.

Keywords

References

  1. A. Ghimire, L. Frunzo, F. Pirozzi, E. Trably, R. Escudie, P. N. Lens, and G. Esposito, "A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products", Appl. Energ., Vol. 144, 2015, pp. 73-95. https://doi.org/10.1016/j.apenergy.2015.01.045
  2. C. Sambusiti, M. Bellucci, A. Zabaniotou, L. Beneduce, and F. Monlau, "Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: A comprehensive review", Renew. Sust. Energ. Rev., Vol. 44, 2015, pp. 20-36. https://doi.org/10.1016/j.rser.2014.12.013
  3. S. K. Khanal, "Anaerobic biotechnology for bioenergy production: Principles and Applications", 1st ed., John Wiley & Sons, New York, USA, 2008, pp. 189-192.
  4. M. Momirlan, and T. Veziroglu, "Current status of hydrogen energy", Renew. Sust. Energ. Rev., Vol. 6, No. 1, 2002, pp. 141-179. https://doi.org/10.1016/S1364-0321(02)00004-7
  5. J. D. Holladay, J. Hu, D. L. King, and Y. Wang, "An overview of hydrogen production technologies", Catal. Today, Vol. 139, No. 4, 2009, pp. 244-260. https://doi.org/10.1016/j.cattod.2008.08.039
  6. J. Benemann, "Hydrogen biotechnology: progress and prospects", Nat. Biotechnol., Vol. 14, No. 9, 1996, pp. 1101-1103. https://doi.org/10.1038/nbt0996-1101
  7. R. Kothari, D. P. Singh, V. V. Tyagi, and S. K. Tyagi, "Fermentative hydrogen production-An alternative clean energy source", Renew. Sust. Energ. Rev., Vol. 16, No. 4, 2012, pp. 2337-2346. https://doi.org/10.1016/j.rser.2012.01.002
  8. K. Y. Show, D. J. Lee, J. H. Tay, C. Y. Lin, and J. S. Chang, "Biohydrogen production: Current perspectives and the way forward", Int. J. Hydrogen Energ., Vol. 37, No. 20, 2012, pp. 15616-15631. https://doi.org/10.1016/j.ijhydene.2012.04.109
  9. R. Nandi, and S, Sengupta, "Microbial production of hydrogen: an overview", Crit. Rev. Microbiol., Vol. 24, No. 1, 1998, pp. 61-84. https://doi.org/10.1080/10408419891294181
  10. S. K. Han, and H. S. Shin, "Biohydrogen production by anaerobic fermentation of food waste", Int. J. Hydrogen Energ., Vol. 29, No. 6, 2004, pp. 569-577. https://doi.org/10.1016/j.ijhydene.2003.09.001
  11. S. H. Kim, S. K. Han, and H. S. Shin, "Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter", Process Biochem., Vol. 41, No. 1, 2006, pp. 199-207. https://doi.org/10.1016/j.procbio.2005.06.013
  12. M. F. Arooj, S. K. Han, S. H. Kim, D. H. Kim, and H. S. Shin, "Effect of HRT on ASBR converting starch into biological hydrogen", Int. J. Hydrogen Energ., Vol. 33, No. 22, 2008, pp. 6509-6514. https://doi.org/10.1016/j.ijhydene.2008.06.077
  13. C. Nathao, U. Sirisukpoka, and N. Pisutpaisal, "Production of hydrogen and methane by one and two stage fermentation of food waste", Int. J. Hydrogen Energ., Vol. 38, No. 35, 2013, pp. 15764-15769. https://doi.org/10.1016/j.ijhydene.2013.05.047
  14. F. R. Hawkes, I. Hussy, G. Kyazze, R. Dinsdale, and D. L. Hawkes, "Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress", Int. J. Hydrogen Energ., Vol. 32, No. 2, 2007, pp. 172-184. https://doi.org/10.1016/j.ijhydene.2006.08.014
  15. S. K. Han, D. H. Kim, and H. S. Shin, "Biohydrogen Production from Organic Waste", J. Korean Soc. Environ Eng., Vol 30, No. 9, 2008, pp. 1-11.
  16. P. L. McCarty, and D. P. Smith, "Anaerobic wastewater treatment", Environ. Sci. Tech., Vol. 20, No. 12, 1986, pp. 1200-1206. https://doi.org/10.1021/es00154a002
  17. R. Sparling, D. Risbey, and H. M. Poggi-Varaldo, "Hydrogen production from inhibited anaerobic composters", Int. J. Hydrogen Energ., Vol. 22, No. 6, 1997, pp. 563-566. https://doi.org/10.1016/S0360-3199(96)00137-1
  18. J. J. Lay, Y. J. Lee, and T. Noike, "Feasibility of biological hydrogen production from organic fraction of municipal solid waste", Water Res., Vol. 33, No. 11, 1999, pp. 2579-2586. https://doi.org/10.1016/S0043-1354(98)00483-7
  19. J. J. Lay, "Modeling and optimization of anaerobic digested sludge converting starch to hydrogen", Biotechnol. Bioeng., Vol. 68, No. 3, 2000, pp. 269-278. https://doi.org/10.1002/(SICI)1097-0290(20000505)68:3<269::AID-BIT5>3.0.CO;2-T
  20. S. V. Ginkel, J. J. Lay, and S. Sung, "Biohydrogen production as a function of pH and substrate concentration", Environ. Sci. Technol., Vol. 35, No. 24, 2001, pp. 4726-4730. https://doi.org/10.1021/es001979r
  21. H. Argun, and F, Kargi, "Bio-hydrogen production by different operational modes of dark and photofermentation: An overview", Int. J. Hydrogen Energ., Vol. 36, No. 13, 2011, pp. 7443-7459. https://doi.org/10.1016/j.ijhydene.2011.03.116
  22. T. Keskin, M. Abo-Hashesh, and P. C. Hallenbeck, "Photofermentative hydrogen production from waste", Bioresource Technol., Vol. 102, No. 18, 2011, pp. 8557-8568. https://doi.org/10.1016/j.biortech.2011.04.004
  23. D. H. Kim, "Innovative two-stage fermentation system converting organic solid waste to hydrogen and methane", Ph. D. dissertation, KAIST, 2008, pp. 10-13.
  24. R. E. Speece, "Anaerobic biotechnology", 1st ed., Archae press, Tennessee, USA, 1996, pp. 54-56.
  25. S. K. Han, and H. S. Shin, "Performance of an Innovative Two-Stage Process Converting Food Waste to Hydrogen and Methane", J. Air Waste Manage., Vol. 54, No. 2, 2004, pp. 242-249. https://doi.org/10.1080/10473289.2004.10470895
  26. G. D. Gioannis, A. Muntoni, A. Polettini, and R. Pomi, "A review of dark fermentative hydrogen production from biodegradable municipal waste fractions", Waste manage., Vol. 33, No. 6, 2013, pp. 1345-1361. https://doi.org/10.1016/j.wasman.2013.02.019
  27. L. Dong, Y. Zhenhong, S. Yongming, and M. Longlong, "Anaerobic fermentative co-production of hydrogen and methane from an organic fraction of municipal solid waste", Energ. Source Part A, Vol. 33, No. 6, 2011, pp. 575-585. https://doi.org/10.1080/15567030903117653
  28. X. Wang, and Y. C. Zhao, "A bench scale study of fermentative hydrogen and methane production from food waste in integrated two-stage process", Int. J. Hydrogen Energ., Vol. 34, No. 1, 2009, pp. 245-254. https://doi.org/10.1016/j.ijhydene.2008.09.100
  29. D. Y. Lee, Y. Ebie, K. Q. Xu, Y. Y. Li, and Y. Inamori, "Continuous $H_2$ and $CH_4$ production from high-solid food waste in the two-stage thermophilic fermentation process with the recirculation of digester sludge", Bioresource Technol., Vol. 101, No. 1, 2010, pp. S42-S47. https://doi.org/10.1016/j.biortech.2009.03.037
  30. C. F. Chu, Y. Y. Li, K. Q. Xu, Y. Ebie, Y. Inamori, and H. N. Kong, "A pH- and temperature-phased two-stage process for hydrogen and methane production from food waste", Int. J. Hydrogen Energ., Vol. 33, No. 18, 2008, pp. 4739-4746. https://doi.org/10.1016/j.ijhydene.2008.06.060
  31. Y. W. Lee, and J. Chung, "Bioproduction of hydrogen from food waste by pilot-scale combined hydrogen/ methane fermentation", Int. J. Hydrogen Energ., Vol. 35, No. 21, 2010, pp. 11746-11755. https://doi.org/10.1016/j.ijhydene.2010.08.093
  32. G. Kvesitadze, T. Sadunishvili, T. Dudauri, N. Zakariashvili, G. Partskhaladze, V. Ugrekhelidze, G. Tsiklauri, B. Metreveli, and M. Jobava, "Twostage anaerobic process for bio-hydrogen and biomethane combined production from biodegradable solid wastes", Energy, Vol. 37, No. 1, 2012, pp. 94-102. https://doi.org/10.1016/j.energy.2011.08.039
  33. C. Y. Chen, K. L. Yeh, Y. C. Lo, H. M. Wang, and J. S. Chang, "Engineering strategies for the enhanced photo-$H_2$ production using effluents of dark fermentation processes as substrate", Int. J. Hydrogen Energ., Vol. 35, Nol. 24, 2010, pp. 13356-13364. https://doi.org/10.1016/j.ijhydene.2009.11.070
  34. Y. Tao, Y. Chen, Y. Wu, Y. He, and Z. Zhou, "High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose", Int. J. Hydrogen Energ., Vol. 32, No. 2, 2007, pp. 200-206. https://doi.org/10.1016/j.ijhydene.2006.06.034
  35. W. Zong, R. Yu, P. Zhang, M. Fan, and Z. Zhou, "Efficient hydrogen gas production from cassava and food waste by a two-step process of dark fermentation and photo-fermentation", Biomass Bioenerg., Vol. 33, No. 10, 2009, pp. 1458-1463. https://doi.org/10.1016/j.biombioe.2009.06.008
  36. T. V. Laurinavichene, B. F. Belokopytov, K. S. Laurinavichius, D. N. Tekucheva, M. Seibert, and A. A. Tsygankov, "Towards the integration of dark- and photo-fermentative waste treatment. 3. Potato as substrate for sequential dark fermentation and light-driven $H_2$ production", Int. J. Hydrogen Energ., Vol. 35, No. 16, 2010, pp. 8536-8543. https://doi.org/10.1016/j.ijhydene.2010.02.063
  37. J. Cheng, H. Su, J. Zhou, W. Song, and K, Cen, "Hydrogen production by mixed bacteria through dark and photo fermentation", Int. J. Hydrogen Energ., Vol. 36, No. 1, 2011, pp. 450-457. https://doi.org/10.1016/j.ijhydene.2010.10.007
  38. B. E. Logan, B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey, "Microbial fuel cells: methodology and technology", Environ. Sci. Technol., Vol. 40, No. 17, 2006, pp. 5181-5192. https://doi.org/10.1021/es0605016
  39. S. K. Han, "Microbial Fuel Cells: Principles and Applications to Environmental Health", J. Environ. Health Sci., Vol. 38, No. 2, 2012, pp. 83-94.
  40. B. E. Logan, "Exoelectrogenic bacteria that power microbial fuel cells", Nat. Rev. Microbiol., Vol. 7, No. 5, 2009, pp. 375-381. https://doi.org/10.1038/nrmicro2113
  41. B. E. Logan, "Microbial fuel cells", 1st ed., John Wiley & Sons, New York, USA, 2008, pp. 4-6.
  42. T. H. Lee, J. C. Yu, and S. J. Choi, "Microbial fuel cells suing biocathodes", J. Korean Soc. Environ. Eng., Vol. 31, No. 8, 2009, pp. 593-600.
  43. V. B. Oliveira, M. Simoes, L. F. Melo, and A. M. F. R. Pinto, "Overview on the developments of microbial fuel cells", Biochem. Eng. J., Vol. 73, No. 15, 2013, pp. 53-64. https://doi.org/10.1016/j.bej.2013.01.012
  44. H. Liu, S. Cheng, L. Huang, and B. E. Logan, "Scale-up of membrane-free single chamber microbial fuel cells", J. Power Sources, Vol. 179, No. 1, 2008, pp. 274-279. https://doi.org/10.1016/j.jpowsour.2007.12.120
  45. Y. Zuo, S. Cheng, and B. Logan, "Ion exchange membrane cathodes for scalable microbial fuel cells", Environ. Sci. Technol., Vol. 42, No. 18, 2008, pp. 6967-6972. https://doi.org/10.1021/es801055r
  46. A. Dekker, A. T. Heijne, M. Saakes, H. V. M. Hamelers, and C. J. N. Buisman, "Analysis and improvement of a scaled-up and stacked microbial fuel cell", Environ. Sci. Technol., Vol. 43, No. 23, 2009, pp. 9038-9042. https://doi.org/10.1021/es901939r
  47. Y. Fan, S. K. Han, and H. Liu, "Improved performance of CEA microbial fuel cells with increased reactor size", Energy Environ. Sci., Vol. 5, No. 8, 2012, pp. 8273-8280. https://doi.org/10.1039/c2ee21964f
  48. A. T. Heijne, F. Liu, L. S. V. Rijnsoever, M. Saakes, H. V. M. Hamelers, and C. J. N. Buisman, "Performance of a scaled-up Microbial Fuel Cell with iron reduction as the cathode reaction", J. Power Sources, Vol. 196, No. 18, 2011, pp. 7572-7577. https://doi.org/10.1016/j.jpowsour.2011.04.034
  49. N. Ren, A. Wang, G. Cao, J. Xu, and L. Gao, "Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges", Biotechnol. Adv., Vol. 27, No. 6, 2009, pp. 1051-1060. https://doi.org/10.1016/j.biotechadv.2009.05.007
  50. O. Bicakova, and P. Straka, "Production of hydrogen from renewable resources and its effectiveness", Int. J. Hydrogen Energ., Vol. 37, No. 16, 2012, pp. 11563-11578. https://doi.org/10.1016/j.ijhydene.2012.05.047
  51. R. A. Rozendal, H. V. Hamelers, and C. J. Buisman, "Effects of membrane cation transport on pH and microbial fuel cell performance", Environ. Sci. Technol., Vol. 40, No. 17, 2006, pp. 5206-5211. https://doi.org/10.1021/es060387r
  52. H. Hu, Y. Fan, and H. Liu, "Hydrogen production using single-chamber membrane-free microbial electrolysis cells", Water Res., Vol. 42, No. 15, 2008, pp. 4172-4178. https://doi.org/10.1016/j.watres.2008.06.015
  53. G. Kyazze, A. Popov, R. Dinsdale, S. Esteves, F. Hawkes, G. Premier, and A. Guwy, "Influence of catholyte pH and temperature on hydrogen production from acetate using a two chamber concentric tubular microbial electrolysis cell", Int. J. Hydrogen Energ., Vol. 35, No. 15, 2010, pp. 7716-7722. https://doi.org/10.1016/j.ijhydene.2010.05.036
  54. J. Y. Nam, and B. E. Logan, "Optimization of catholyte concentration and anolyte pHs in two chamber microbial electrolysis cells", Int. J. Hydrogen Energ., Vol. 37, No. 24, 2012, pp. 18622-18628. https://doi.org/10.1016/j.ijhydene.2012.09.140

Cited by

  1. Production of Biofuels and Biochemicals by Biorefinery vol.27, pp.6, 2016, https://doi.org/10.7316/KHNES.2016.27.6.702