Browse > Article
http://dx.doi.org/10.7316/KHNES.2015.26.3.247

Two-stage Bioprocesses Combining Dark H2 Fermentation: Organic Waste Treatment and Bioenergy Production  

LEE, CHAE-YOUNG (Dept. of Civil Engineering.Institute of River Environment Technology, The University of Suwon)
YOO, KYU-SEON (Dept. of Civil & Environmental Engineering, Jeonju University)
HAN, SUN-KEE (Dept. of Environmental Health, Korea National Open University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.26, no.3, 2015 , pp. 247-259 More about this Journal
Abstract
This study was performed to investigate the application of dark $H_2$ fermentation to two-stage bioprocesses for organic waste treatment and energy production. We reviewed information about the two-stage bioprocesses combining dark $H_2$ fermentation with $CH_4$ fermentation, photo $H_2$ fermentation, microbial fuel cells (MFCs), or microbial electrolysis cells (MECs) by using academic information databases and university libraries. Dark fermentative bacteria use organic waste as the sole source of electrons and energy, converting it into $H_2$. The reactions related to dark $H_2$ fermentation are rapid and do not require sunlight, making them useful for treating organic waste. However, the degradation is not complete and organic acids remain. Thus, dark $H_2$ fermentation should be combined with a post-treatment process, such as $CH_4$ fermentation, photo $H_2$ fermentation, MFCs, or MECs. So far, dark $H_2$ fermentation followed by $CH_4$ fermentation is a promising two-stage bioprocess among them. However, if the problems of manufacturing expenses, operational cost, scale-up, and practical applications will be solved, the two-stage bioprocesses combining dark $H_2$ fermentation with photo $H_2$ fermentation, MFCs, or MECs have also infinite potential in organic waste treatment and energy production. This paper demonstrated the feasibility of two-stage bioprocesses combining dark $H_2$ fermentation as a novel system for organic waste treatment and energy production.
Keywords
Two-stage bioprocess; Dark $H_2$ fermentation; $CH_4$ fermentation; Photo $H_2$ fermentation; Microbial fuel cells; Microbial electrolysis cells;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 V. B. Oliveira, M. Simoes, L. F. Melo, and A. M. F. R. Pinto, "Overview on the developments of microbial fuel cells", Biochem. Eng. J., Vol. 73, No. 15, 2013, pp. 53-64.   DOI   ScienceOn
2 H. Liu, S. Cheng, L. Huang, and B. E. Logan, "Scale-up of membrane-free single chamber microbial fuel cells", J. Power Sources, Vol. 179, No. 1, 2008, pp. 274-279.   DOI
3 Y. Zuo, S. Cheng, and B. Logan, "Ion exchange membrane cathodes for scalable microbial fuel cells", Environ. Sci. Technol., Vol. 42, No. 18, 2008, pp. 6967-6972.   DOI
4 A. Dekker, A. T. Heijne, M. Saakes, H. V. M. Hamelers, and C. J. N. Buisman, "Analysis and improvement of a scaled-up and stacked microbial fuel cell", Environ. Sci. Technol., Vol. 43, No. 23, 2009, pp. 9038-9042.   DOI
5 Y. Fan, S. K. Han, and H. Liu, "Improved performance of CEA microbial fuel cells with increased reactor size", Energy Environ. Sci., Vol. 5, No. 8, 2012, pp. 8273-8280.   DOI
6 A. T. Heijne, F. Liu, L. S. V. Rijnsoever, M. Saakes, H. V. M. Hamelers, and C. J. N. Buisman, "Performance of a scaled-up Microbial Fuel Cell with iron reduction as the cathode reaction", J. Power Sources, Vol. 196, No. 18, 2011, pp. 7572-7577.   DOI
7 N. Ren, A. Wang, G. Cao, J. Xu, and L. Gao, "Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges", Biotechnol. Adv., Vol. 27, No. 6, 2009, pp. 1051-1060.   DOI
8 O. Bicakova, and P. Straka, "Production of hydrogen from renewable resources and its effectiveness", Int. J. Hydrogen Energ., Vol. 37, No. 16, 2012, pp. 11563-11578.   DOI
9 R. A. Rozendal, H. V. Hamelers, and C. J. Buisman, "Effects of membrane cation transport on pH and microbial fuel cell performance", Environ. Sci. Technol., Vol. 40, No. 17, 2006, pp. 5206-5211.   DOI
10 H. Hu, Y. Fan, and H. Liu, "Hydrogen production using single-chamber membrane-free microbial electrolysis cells", Water Res., Vol. 42, No. 15, 2008, pp. 4172-4178.   DOI
11 G. Kyazze, A. Popov, R. Dinsdale, S. Esteves, F. Hawkes, G. Premier, and A. Guwy, "Influence of catholyte pH and temperature on hydrogen production from acetate using a two chamber concentric tubular microbial electrolysis cell", Int. J. Hydrogen Energ., Vol. 35, No. 15, 2010, pp. 7716-7722.   DOI
12 J. Y. Nam, and B. E. Logan, "Optimization of catholyte concentration and anolyte pHs in two chamber microbial electrolysis cells", Int. J. Hydrogen Energ., Vol. 37, No. 24, 2012, pp. 18622-18628.   DOI
13 M. Momirlan, and T. Veziroglu, "Current status of hydrogen energy", Renew. Sust. Energ. Rev., Vol. 6, No. 1, 2002, pp. 141-179.   DOI
14 A. Ghimire, L. Frunzo, F. Pirozzi, E. Trably, R. Escudie, P. N. Lens, and G. Esposito, "A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products", Appl. Energ., Vol. 144, 2015, pp. 73-95.   DOI
15 C. Sambusiti, M. Bellucci, A. Zabaniotou, L. Beneduce, and F. Monlau, "Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: A comprehensive review", Renew. Sust. Energ. Rev., Vol. 44, 2015, pp. 20-36.   DOI
16 S. K. Khanal, "Anaerobic biotechnology for bioenergy production: Principles and Applications", 1st ed., John Wiley & Sons, New York, USA, 2008, pp. 189-192.
17 J. D. Holladay, J. Hu, D. L. King, and Y. Wang, "An overview of hydrogen production technologies", Catal. Today, Vol. 139, No. 4, 2009, pp. 244-260.   DOI
18 J. Benemann, "Hydrogen biotechnology: progress and prospects", Nat. Biotechnol., Vol. 14, No. 9, 1996, pp. 1101-1103.   DOI
19 R. Kothari, D. P. Singh, V. V. Tyagi, and S. K. Tyagi, "Fermentative hydrogen production-An alternative clean energy source", Renew. Sust. Energ. Rev., Vol. 16, No. 4, 2012, pp. 2337-2346.   DOI
20 K. Y. Show, D. J. Lee, J. H. Tay, C. Y. Lin, and J. S. Chang, "Biohydrogen production: Current perspectives and the way forward", Int. J. Hydrogen Energ., Vol. 37, No. 20, 2012, pp. 15616-15631.   DOI
21 R. Nandi, and S, Sengupta, "Microbial production of hydrogen: an overview", Crit. Rev. Microbiol., Vol. 24, No. 1, 1998, pp. 61-84.   DOI
22 S. K. Han, and H. S. Shin, "Biohydrogen production by anaerobic fermentation of food waste", Int. J. Hydrogen Energ., Vol. 29, No. 6, 2004, pp. 569-577.   DOI
23 S. H. Kim, S. K. Han, and H. S. Shin, "Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter", Process Biochem., Vol. 41, No. 1, 2006, pp. 199-207.   DOI
24 M. F. Arooj, S. K. Han, S. H. Kim, D. H. Kim, and H. S. Shin, "Effect of HRT on ASBR converting starch into biological hydrogen", Int. J. Hydrogen Energ., Vol. 33, No. 22, 2008, pp. 6509-6514.   DOI   ScienceOn
25 C. Nathao, U. Sirisukpoka, and N. Pisutpaisal, "Production of hydrogen and methane by one and two stage fermentation of food waste", Int. J. Hydrogen Energ., Vol. 38, No. 35, 2013, pp. 15764-15769.   DOI
26 F. R. Hawkes, I. Hussy, G. Kyazze, R. Dinsdale, and D. L. Hawkes, "Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress", Int. J. Hydrogen Energ., Vol. 32, No. 2, 2007, pp. 172-184.   DOI
27 S. K. Han, D. H. Kim, and H. S. Shin, "Biohydrogen Production from Organic Waste", J. Korean Soc. Environ Eng., Vol 30, No. 9, 2008, pp. 1-11.
28 P. L. McCarty, and D. P. Smith, "Anaerobic wastewater treatment", Environ. Sci. Tech., Vol. 20, No. 12, 1986, pp. 1200-1206.   DOI
29 J. J. Lay, Y. J. Lee, and T. Noike, "Feasibility of biological hydrogen production from organic fraction of municipal solid waste", Water Res., Vol. 33, No. 11, 1999, pp. 2579-2586.   DOI
30 R. Sparling, D. Risbey, and H. M. Poggi-Varaldo, "Hydrogen production from inhibited anaerobic composters", Int. J. Hydrogen Energ., Vol. 22, No. 6, 1997, pp. 563-566.   DOI
31 J. J. Lay, "Modeling and optimization of anaerobic digested sludge converting starch to hydrogen", Biotechnol. Bioeng., Vol. 68, No. 3, 2000, pp. 269-278.   DOI
32 S. V. Ginkel, J. J. Lay, and S. Sung, "Biohydrogen production as a function of pH and substrate concentration", Environ. Sci. Technol., Vol. 35, No. 24, 2001, pp. 4726-4730.   DOI
33 H. Argun, and F, Kargi, "Bio-hydrogen production by different operational modes of dark and photofermentation: An overview", Int. J. Hydrogen Energ., Vol. 36, No. 13, 2011, pp. 7443-7459.   DOI
34 T. Keskin, M. Abo-Hashesh, and P. C. Hallenbeck, "Photofermentative hydrogen production from waste", Bioresource Technol., Vol. 102, No. 18, 2011, pp. 8557-8568.   DOI
35 D. H. Kim, "Innovative two-stage fermentation system converting organic solid waste to hydrogen and methane", Ph. D. dissertation, KAIST, 2008, pp. 10-13.
36 R. E. Speece, "Anaerobic biotechnology", 1st ed., Archae press, Tennessee, USA, 1996, pp. 54-56.
37 S. K. Han, and H. S. Shin, "Performance of an Innovative Two-Stage Process Converting Food Waste to Hydrogen and Methane", J. Air Waste Manage., Vol. 54, No. 2, 2004, pp. 242-249.   DOI
38 G. D. Gioannis, A. Muntoni, A. Polettini, and R. Pomi, "A review of dark fermentative hydrogen production from biodegradable municipal waste fractions", Waste manage., Vol. 33, No. 6, 2013, pp. 1345-1361.   DOI
39 X. Wang, and Y. C. Zhao, "A bench scale study of fermentative hydrogen and methane production from food waste in integrated two-stage process", Int. J. Hydrogen Energ., Vol. 34, No. 1, 2009, pp. 245-254.   DOI
40 L. Dong, Y. Zhenhong, S. Yongming, and M. Longlong, "Anaerobic fermentative co-production of hydrogen and methane from an organic fraction of municipal solid waste", Energ. Source Part A, Vol. 33, No. 6, 2011, pp. 575-585.   DOI
41 D. Y. Lee, Y. Ebie, K. Q. Xu, Y. Y. Li, and Y. Inamori, "Continuous $H_2$ and $CH_4$ production from high-solid food waste in the two-stage thermophilic fermentation process with the recirculation of digester sludge", Bioresource Technol., Vol. 101, No. 1, 2010, pp. S42-S47.   DOI
42 C. F. Chu, Y. Y. Li, K. Q. Xu, Y. Ebie, Y. Inamori, and H. N. Kong, "A pH- and temperature-phased two-stage process for hydrogen and methane production from food waste", Int. J. Hydrogen Energ., Vol. 33, No. 18, 2008, pp. 4739-4746.   DOI
43 Y. W. Lee, and J. Chung, "Bioproduction of hydrogen from food waste by pilot-scale combined hydrogen/ methane fermentation", Int. J. Hydrogen Energ., Vol. 35, No. 21, 2010, pp. 11746-11755.   DOI
44 G. Kvesitadze, T. Sadunishvili, T. Dudauri, N. Zakariashvili, G. Partskhaladze, V. Ugrekhelidze, G. Tsiklauri, B. Metreveli, and M. Jobava, "Twostage anaerobic process for bio-hydrogen and biomethane combined production from biodegradable solid wastes", Energy, Vol. 37, No. 1, 2012, pp. 94-102.   DOI
45 C. Y. Chen, K. L. Yeh, Y. C. Lo, H. M. Wang, and J. S. Chang, "Engineering strategies for the enhanced photo-$H_2$ production using effluents of dark fermentation processes as substrate", Int. J. Hydrogen Energ., Vol. 35, Nol. 24, 2010, pp. 13356-13364.   DOI
46 J. Cheng, H. Su, J. Zhou, W. Song, and K, Cen, "Hydrogen production by mixed bacteria through dark and photo fermentation", Int. J. Hydrogen Energ., Vol. 36, No. 1, 2011, pp. 450-457.   DOI
47 Y. Tao, Y. Chen, Y. Wu, Y. He, and Z. Zhou, "High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose", Int. J. Hydrogen Energ., Vol. 32, No. 2, 2007, pp. 200-206.   DOI
48 W. Zong, R. Yu, P. Zhang, M. Fan, and Z. Zhou, "Efficient hydrogen gas production from cassava and food waste by a two-step process of dark fermentation and photo-fermentation", Biomass Bioenerg., Vol. 33, No. 10, 2009, pp. 1458-1463.   DOI
49 T. V. Laurinavichene, B. F. Belokopytov, K. S. Laurinavichius, D. N. Tekucheva, M. Seibert, and A. A. Tsygankov, "Towards the integration of dark- and photo-fermentative waste treatment. 3. Potato as substrate for sequential dark fermentation and light-driven $H_2$ production", Int. J. Hydrogen Energ., Vol. 35, No. 16, 2010, pp. 8536-8543.   DOI
50 B. E. Logan, B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey, "Microbial fuel cells: methodology and technology", Environ. Sci. Technol., Vol. 40, No. 17, 2006, pp. 5181-5192.   DOI
51 S. K. Han, "Microbial Fuel Cells: Principles and Applications to Environmental Health", J. Environ. Health Sci., Vol. 38, No. 2, 2012, pp. 83-94.
52 B. E. Logan, "Exoelectrogenic bacteria that power microbial fuel cells", Nat. Rev. Microbiol., Vol. 7, No. 5, 2009, pp. 375-381.   DOI
53 B. E. Logan, "Microbial fuel cells", 1st ed., John Wiley & Sons, New York, USA, 2008, pp. 4-6.
54 T. H. Lee, J. C. Yu, and S. J. Choi, "Microbial fuel cells suing biocathodes", J. Korean Soc. Environ. Eng., Vol. 31, No. 8, 2009, pp. 593-600.