• Title/Summary/Keyword: Hydrogen center

Search Result 1,646, Processing Time 0.03 seconds

Hydrogen Permeation Properties of $(Ni_{60}-Nb_{40})_{95}-Pd_5$ Amorphous Metallic Membrane ($(Ni_{60}-Nb_{40})_{95}-Pd_5$ 비정질 금속막의 수소투과 특성)

  • Lee, Dock-Young;Kim, Yoon-Bae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.4
    • /
    • pp.359-366
    • /
    • 2008
  • Hydrogen as a high-quality and clean energy carrier has attracted renewed and ever-increasing attention around the world in recent years, mainly due to developments in fuel cells and environmental pressures including climate change issues. In this processes for hydrogen production from fossil fuels, separation and purification is a critical technology. $(Ni_{60}-Nb_{40})_{95}-Pd_5$ alloy ingots were prepared by arc-melting the mixture of pure metals in an Ar atmosphere. Melt-spun ribbons were produced by the single-roller melt-spinning technique in an Ar atmosphere. Amorphous structure and thermal behavior were characterized by XRD and DSC. The permeability of the $(Ni_{60}-Nb_{40})_{95}-Pd_5$ amorphous alloy membrane was characterized by hydrogen permeation experiments in the temperature range 623 to 773 K and pressure of 2 bars. The maximum hydrogen permeability was $3.54{\times}10^{-9}[mol{\cdot}m^{-1}s^{-1}{\cdot}pa^{-1/2}]$ at 773 K for the $(Ni_{60}-Nb_{40})_{95}-Pd_5$ amorphous alloy.

Investigation of Photocatalytic Activity with a Metal Doped TiO2 Nanotubular Electrode for Hydrogen Production (금속담지 된 수소제조용 TiO2 나노튜브 전극의 광활성 연구)

  • Lee, Jae-Min;Lee, Chang-Ha;Yoon, Jae-Kyung;Joo, Hyun-Ku
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.656-662
    • /
    • 2011
  • The purpose of this study was to correlate between photoelectrochemcial hydrogen production rate and electron transfer with various types of metal doped $TiO_2$ nanotubes as photoanodes. In order to fabricate light sensitized photoanode, CdS, $WO_3$, and Pt were doped by electrodeposition method. As the results of experiments, the electron transfer was favorable from higher position to lower position of conduction band (CB). In consequence, the higher hydrogen production rate was as follows, CdS/$TiO_2$ (100 $umol/hr-cm^2$) > $WO_3/TiO_2$ (20 $umol/hr-cm^2$) > Pt/$TiO_2$ (10 $umol/hr-cm^2$). The surface characterizations exhibited that crystal structure, morphological and electrical properties of various metal depoed $TiO_2$ nanotubes by the results of SEM, TEM, XPS, and photocurrent measurements.

Multiplication conditions in light reaction and hydrogen production in dark fermentation using Chlamydomonas reinhardtii (Chlamydomonas reinhardtii 이용한 명반응 증식 특성 및 암반응에서 수소 생산)

  • Kim, Ji-Seong;Park, Ho-Il;Kim, Dong-Kun;Gong, Gyeng-Taek;Cho, Kyung-Suk;Pak, Dae-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.1
    • /
    • pp.17-24
    • /
    • 2005
  • We experimented on growth in light and production of hydrogen and organic matters in dark fermentation by using C. reinhardtii. In the light, growth rate of C. reinhardtii following $CO_2$ fixation was proportional to consumption rate of nitrogen source. And the starch in cell was accumulated more when the period of culture was lengthened more. But the accumulation rate of starch in cell was decreased when the growth rate of cell become dull. In the dark fermentation, the production volume and production rate of hydrogen were the highest value in the mid exponential state among other states. The utilization efficiency of substrate was better in the early exponential state than other states. In production of organic matters, acetic acid didn't change remarkably and ethanol showed the highest value in early exponential state.

Improved Microstructural Homogeneity of Ni-BCY Cermets Membrane via High-Energy Milling (고에너지 밀링을 통한 Ni-BaCe0.9Y0.1O3-δ 서멧 멤브레인의 미세구조 균질성 향상)

  • Kim, Hyejin;Ahn, Kiyong;Kim, Boyoung;Lee, Jongheun;Chung, Yong-Chae;Kim, Hae-Ryoung;Lee, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.648-653
    • /
    • 2012
  • Hybridization of dense ceramic membranes for hydrogen separation with an electronically conductive metallic phase is normally utilized to enhance the hydrogen permeation flux and thereby to increase the production efficiency of hydrogen. In this study, we developed a nickel and proton conducting oxide ($BaCe_{0.9}Y_{0.1}O_{3-{\delta}}$: BCY) based cermet (ceramic-metal composites) membrane. Focused on the general criteria in that the hydrogen permeation properties of a cermet membrane depend on its microstructural features, such as the grain size and the homogeneity of the mix, we tried to optimize the microstructure of Ni-BCY cermets by controlling the fabrication condition. The Ni-BCY composite powder was synthesized via a solid-state reaction using $2NiCO_3{\cdot}3Ni(OH)_2{\cdot}4H_2O$, $BaCeO_3$, $CeO_2$ and $Y_2O_3$ as a starting material. To optimize the mixing scale and homogeneity of the composite powder, we employed a high-energy milling process. With this high-energy milled composite powder, we could fabricate a fine-grained dense membrane with an excellent level of mixing homogeneity. This controlled Ni-BCY cermet membrane showed higher hydrogen permeability compared to uncontrolled Ni-BCY cermets created with a conventionally ball-milled composite powder.

A Study on the Charpy Impact Performance of Structural Steel Considering the Leakage of Cryogenic Liquefied Gas (극저온 액화가스 누출에 의한 선체 구조용 강재의 샤르피 충격성능에 관한 연구)

  • Dong Hyuk Kang;Jeong-Hyeon Kim;Seul-Kee Kim;Tae-Wook Kim;Doo-Hwan Park;Ki-Beom Park;Jae-Myung Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.2_2
    • /
    • pp.333-340
    • /
    • 2023
  • Environmental regulations are being strengthened worldwide to solve global warming. For this reason, interest in eco-friendly gas fuels such as LNG and hydrogen is continuously increasing. However, when adopting eco-friendly gas fuel, liquefying at a cryogenic temperature is essential to ensure economic feasibility in storage and transportation. Although austenitic stainless steel is typically applied to store cryogenic liquefied gas, structural steel can experience sudden heat shrinkage in the case of leakage in the loading and unloading process of LNG. In severe cases, the phase of the steel may change, so care is required. This study conducted Charpy impact tests on steel material in nine different temperature ranges, from room to cryogenic temperatures, to analyze the effects of cryogenic liquefied gas leaks. As a result of the study, it was not easy to find variations in ductile to brittle transition temperature (DBTT) due to the leakage of cryogenic liquefied gas. Still, the overall impact toughness tended to decrease, and these results were verified through fracture surface analysis. In summary, brittle fracture of the steel plate may occur when a secondary load is applied to steel for hull structural use exposed to a cryogenic environment of -40 ℃ or lower. Therefore, it needs to be considered in the ship design and operating conditions.

R&D Trends and Unit Processes of Hydrogen Station (수소 스테이션의 연구개발 동향 및 단위공정 기술)

  • Moon, Dong Ju;Lee, Byoung Gwon
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.331-343
    • /
    • 2005
  • Development of hydrogen station system is an important technology to commercialize fuel cells and fuel cell powered vehicles. Generally, hydrogen station consists of hydrogen production process including desulfurizer, reformer, water gas shift (WGS) reactor and pressure swing adsorption (PSA) apparatus, and post-treatment process including compressor, storage and distributer. In this review, we investigate the R&D trends and prospects of hydrogen station in domestic and foreign countries for opening the hydrogen economy society. Indeed, the reforming of fossil fuels for hydrogen production will be essential technology until the ultimate process that may be water hydrolysis using renewable energy source such as solar energy, wind force etc, will be commercialized in the future. Hence, we also review the research trends on unit technologies such as the desulfurization, reforming reaction of fossil fuels, water gas shift reaction and hydrogen separation for hydrogen station applications.

Palladium-based Electrical and Optical Hydrogen Gas Sensors

  • Jinwoo, Lee;Minah, Seo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.397-402
    • /
    • 2022
  • In this short review, we explore the recent progress in metal-based gas-sensing techniques. The strong interaction between the metal films and hydrogen gas can be considered to play a considerably important role in the gas-sensing technique. The physical and chemical reactions in Pd-Pd hydride systems were studied in terms of the phase transition and lattice expansion of the metals. Two types of represented detection, electrical and optical, were introduced and discussed along with their advantages.

Comparative Evaluation of Environmental Availability for Hydrogen Supply System with Existing Natural Gas Pipeline (천연가스배관을 통한 수소 혼합공급의 환경적 유용성 평가)

  • Kim, Hyoung-Sik;Hong, Seong-Ho;Hwang, Tae-Yeon
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.3
    • /
    • pp.28-32
    • /
    • 2009
  • There are two hydrogen supply systems which are central and distributed supply. Central supply system may be cost-effective but huge supply infra cost is needed. For cost-effectiveness, hydrogen supply with existing natural gas pipeline has been focused in Europe. From the analysis results in this study, hydrogen supply method with existing natural gas pipeline is the better for environmental availability including green house effect.

  • PDF

The Performance of NI/$MgAl_2O_4$ Coated Metal Monolith in Natural Gas Steam Reforming for Hydrogen Production (NI/$MgAl_2O_4$코팅된 금속 모노리스 촉매의 수소 생산을 위한 천연가스 수증기 개질 반응특성에 관한 연구)

  • Choi, Eun-Jeong;Koo, Kee-Young;Jung, Un-Ho;Rhee, Young-Woo;Yoon, Wang-Lai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.6
    • /
    • pp.500-506
    • /
    • 2010
  • The metal monolith catalyst coated with 15wt% Ni/$MgAl_2O_4$ is applied to the natural gas steam reforming for hydrogen production. To address the improvement of adherence between metal monolith and catalyst coating layer, the pre-calcination temperature as well as the coating conditions of $Al_2O_3$ sol are optimized. When the Fe-Cr alloy monolith is pre-calcined at $900^{\circ}C$ for 6 h, $Al_2O_3$ layer was formed uniformly on the entire surface of the metal substrate. It is seen that the formation of $Al_2O_3$ layer on the monolith surface is essential for the uniform coating of $Al_2O_3$ sol onto the monolith substrate. The monolith catalyst coated with 10wt% $Al_2O_3$ sol shows high $CH_4$ conversion and good thermal stability as compared with the monolith catalyst without $Al_2O_3$ sol coating under severe reaction conditions with high GHSV of 30,000 $h^{-1}$ at $700^{\circ}C$. In addition, the metal monolith catalyst shows higher catalytic activity and better thermal conductivity than 15wt% Ni/$MgAl_2O_4$ pellet catalyst.