• 제목/요약/키워드: Hydrogen bond energy

검색결과 106건 처리시간 0.022초

Phenol과 DMA 간의 수소결합 (Intermolecular Hydrogen Bond between Phenol and DMAs)

  • 김복혜;이익춘
    • 대한화학회지
    • /
    • 제10권1호
    • /
    • pp.15-17
    • /
    • 1966
  • Phenol과 각 종 Dimethylaniline(DMA)간의 수소결합을 Infrared Spectrophotometer로 연구하였다. 일반으로 DMA는 n-donor 및 ${\pi}$-donor의 2중 역활을 하나 주로 n-donor로 작용하며 phenol의 O-H stretching frequency의 shift(${\Delta}{\nu}$)는 DMA의 basicity에 비례하였고 (${\Delta}{\nu}$) 와 Hammett의 σcontant사이에는 linearity가 성립함을 알았다.

  • PDF

The Solvent Effects on the Formation of Polyynes by Laser Ablation

  • Park, Young-Eun;Shin, Seung-Keun;Park, Seung-Min
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권7호
    • /
    • pp.2439-2442
    • /
    • 2012
  • In order to explore the effects of the solvent on the formation rate of polyynes, we investigated the absorption spectra of polyynes obtained by laser ablation of a graphite target in different solvents at 1064 nm. Polyynes so produced were confirmed by the Raman band around $2200cm^{-1}$ which corresponds to the carbon triple bonds. The production of polyynes by laser ablation turned out to be significantly affected by the ratio of the hydrogen and carbon atoms in the solvent molecule. No clear correlations were observed in the formation of polyynes for other properties of the solvent such bond dissociation energy, thermal conductivity, and total mass of hydrogen atoms per volume of solvent.

Structure and Intramolecular Proton Transfer of Alanine Radical Cations

  • Lee, Gab-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1561-1565
    • /
    • 2012
  • The structures of the four lowest alanine conformers, along with their radical cations and the effect of ionization on the intramolecular proton transfer process, are studied using the density functional theory and MP2 method. The energy order of the radical cations of alanine differs from that of the corresponding neutral conformers due to changes in the basicity of the $NH_2$ group upon ionization. Ionization favors the intramolecular proton transfer process, leading to a proton-transferred radical-cation structure, [$NH_3{^+}-CHCH_3-COO{\bullet}$], which contrasts with the fact that a proton-transferred zwitterionic conformer is not stable for a neutral alanine in the gas phase. The energy barrier during the proton transfer process is calculated to be about 6 kcal/mol.

Preparation of ultra-clean hydrogen and deuterium terminated Si(111)-($1{\times}1$) surfaces and re-observation of the surface phonon dispersion curves

  • Kato, H.;Taoka, T.;Murugan, P.;Kawazoe, Y.;Yamada, T.;Kasuya, A.;Suto, S.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.4-5
    • /
    • 2010
  • The surface phonon is defined as a coherent vibrational excitation of surface atoms propagating along the surface. It is characterized by a phonon dispersion curves, which were extensively studied in 1990's using helium atom scattering and high-resolution electron-energy-loss spectroscopy (HREELS)[1].The understanding is mainly based on the theoretical framework of a classical bond model or cluster calculations. The recent sample preparation and first principles calculations open the naval way to deep insight for surface phonon problems. The surface phonon dispersion on the hydrogen-terminated Si(111)-($1{\times}1$) surface [H:Si(111)] is the typical system and already reported experimentally [2] and theoretically [3], although the understandingis incomplete. The sample contaminated by the oxygen atoms on the surface and the calculations were also classical. In this study, firstly, we have prepared an ultra-clean H:Si(111) surface [4] and measured the surface phonon dispersion curvesusing HREELS. Secondly, we have performed first-principles density functional calculations with the projector augmented wave functionals, as implemented in VASP, using generalized gradient approximations. We used aslab of six silicon layers and both top and bottom surfaces were terminated with hydrogen atoms. Finally, we have compared with the surface phonon dispersion of deuterium-terminatedSi(111)-($1{\times}1$) surface[5] and led to our conclusions. The Si-H stretching and the bending modes are observed at 258.5 and 78.2 meV, respectively. These energies are the same as the previously reported values [2], but the energy-loss peaks at the lower energy regions are dramatically shifted. Through this combination study, we have formulated the procedure of preparing ultra-clean H:Si(111)/D:Si(111), which was confirmed by HREELS vibrational analysis. The Si surface will be utilized for further nano-physics research as well as for the materials for nano-fubrication.

  • PDF

Theoretical Investigation on the Structure, Detonation Performance and Pyrolysis Mechanism of 4,6,8-Trinitro-4,5,7,8-tetrahydro -6H-furazano[3,4-f]-1,3,5-triazepine

  • Li, Xiao-Hong;Zhang, Rui-Zhou;Zhang, Xian-Zhou
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권5호
    • /
    • pp.1479-1484
    • /
    • 2014
  • Based on the full optimized molecular geometric structures at B3LYP/cc-pvtz method, a new designed compound, 4,6,8-trinitro-4,5,7,8-tetrahydro-6H-furazano[3,4-f ]-1,3,5-triazepine was investigated in order to look for high energy density compounds (HEDCs). The analysis of the molecular structure indicates that the seven-membered ring adopts chair conformation and there exist intramolecular hydrogen bond interactions. IR spectrum and heat of formation (HOF) were predicted. The detonation velocity and pressure were evaluated by using Kamlet-Jacobs equations based on the theoretical density and condensed HOF. The bond dissociation energies and bond orders for the weakest bonds were analyzed to investigate the thermal stability of the title compound. The results show that $N_1-N_6$ bond is the trigger bond. The crystal structure obtained by molecular mechanics belongs to $Pna2_1$ space group, with lattice parameters Z = 4, a = 15.3023 ${\AA}$, b = 5.7882 ${\AA}$, c = 11.0471 ${\AA}$, ${\rho}=2.06gcm^{-3}$. In addition, the analysis of frontier molecular orbital shows the title compound has good stability and high chemical hardness.

Semiempirical MO Study on Malonyl-CoA. 1. Malonic Acid and Malonyl Methyl Sulfide

  • 유인기;김영주;김시춘;김유삼;강영기
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권2호
    • /
    • pp.112-120
    • /
    • 1995
  • The conformational study on malonic acid, hydrogen malonate, malonate, malonyl methyl sulfide, and malonyl methyl sulfide anion, as the model compounds of malonyl-CoA, was carried out using the semiempirical MO methods (MNDO, AM1, and PM3) and hydration shell model. On the whole, the feasible conformations of malonic acid, hydrogen malonate, and malonate seem to be similar to each other. In malonic acid and malonate, two carboxyl groups are nearly perpendicular to the plane of the carbon skeleton, despite of different orientation of two carboxyl groups themselves. In particular, two carboxyl groups of hydrogen malonate are on the plane formed by carbon atoms with an intramolecular hydrogen bond. The calculated results on the geometry and conformation of three compounds are reasonably consistent with those of X-ray and spectroscopic experiments as well as the previous calculations. The orientation of two carbonyl groups of malonyl methyl sulfide is quite similar to that of malonic acid, but different from that of its anion. Especially, the computed probable conformations of the sulfide anion by the three methods are different from each other. The role of hydration seems not to be crucial in stabilizing the overall conformations of malonic acid, hydrogen malonate, malonate, and malonyl methyl sulfide. However, the probable conformations of the unhydrated sulfide anion obtained by the MNDO and AM1 methods become less stabilized by including hydration. The AM1 method seems to be appropriate for conformational study of malonyl-CoA and its model compounds because it does not result in the formation of too strong hydrogen bonds and significant change in conformational energy from one compound to another.

Theoretical Studies of Geometries of Hexafluoro-1,3-butadiene, Tetrafluoro-1,3-butadiene, and Difluoro-1,3-butadiene Compounds

  • Cho, Han-Gook;Kim, Kang-Woo;Cheong, Byeong-Seo
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권4호
    • /
    • pp.452-459
    • /
    • 2004
  • The geometrical structures of various isomers of hexafluoro-1,3-butadiene (HFBD), tetrafluoro-1,3-butadiene (TFBD), and difluoro-1,3-butadiene (DFBD) have been studied theoretically. Natural steric and natural resonance theory (NRT) analyses indicate that the lower energy of skew s-cis conformer of hexafluoro-1,3-butadiene than that of the s-trans conformer is originated from the strong steric repulsions between fluorine atoms particularly in the s-trans conformer. The resonance structures generated by NRT also show that the lone electron pairs of fluorine atoms effectively extend the conjugation, and the large differences in energy among the structural isomers of tetrafluoro-1,3-butadiene and difluoro-1,3-butadiene are in part attributed to the differences in the delocalization energies, in addition to the steric repulsion between fluorine atoms. Other interatomic interactions, such as hydrogen bonding, also play important roles in determination of the structures of isomers of tetrafluoro-1,3-butadiene and difluoro-1,3-butadiene.

Estimation of Bioconcentration Factors in Fish for Organic Nonelectrolytes Using the Linear Solvation Energy Relationship

  • Jung Hag Park;Eun Hee Cho
    • Bulletin of the Korean Chemical Society
    • /
    • 제14권4호
    • /
    • pp.457-461
    • /
    • 1993
  • Bioconcentration factors (BCF) in fish of organic nonelectrolytes are well correlated by a linear solvation energy relationship (LSER) of the form : log BCF= -0.95 + 4.74 $V_I/100 - 4.39{\beta} + 0.88{\alpha}$ where $V_I$ is the intrinsic solute molecular volume and ${\beta}$ and ${\alpha}$ are the solvatochromic parameters that measure hydrogen bond acceptor basicity and donor acidity of the compound. The LSER model can not only correlate the property with an accuracy comparable to molecular connectivity model but also provide a quantitative informationon on the nature and relative strength of solute-target system interactions affecting the property of interest. Such an information can hardly be obtained from molecular connectivity model.

X-선과 중성자 회절을 이용한 강유전체 단결정 $LiN(D_xH_{1-x}){_4}SO_4$의 결정구조 연구 (Crystal Structure Analysis of $LiN(D_xH_{1-x}){_4}SO_4$ by X-ray and Neutron Diffraction)

  • 김신애;김성훈;소지용;이정수;이창희
    • 한국광물학회지
    • /
    • 제20권4호
    • /
    • pp.351-356
    • /
    • 2007
  • 수소원자를 포함한 강유전체 $Li(NH_4)SO_4$의 중수소 치환형인 $Li(ND_4)SO_4$ 단결정에 대해 X-선과 중성자 회절법으로 결정구조를 연구하였다. 이 결정은 상온에서 사방정계이고 공간군은 $P2_1nb$이다. 격자상수는 $a=5.2773(5)\;{\AA},\;b=9.1244(23)\;{\AA},\;c=8.7719(11)\;{\AA}$이며 Z=4이다. 한국원자력연구원의 연구용 원자로인 하나로에 설치된 중성자 4축 단결정 회절장치로 중성자데이터를 수집하였으며, X-선 회절데이터는 일본 동북대학교 물리학과에서 측정하였다. X-선 회절법으로 수집한 1450개의 독립 회절반점에 대하여 최소자승법으로 정밀화하여 최종 신뢰도값 R=0.070을 얻었으며, 중성자 회절법으로는 745개의 회절반점에 대하여 R=0.049을 얻었다. X-선 회절데이터 분석 결과 결정구조 내의 수소원자 중 1개의 위치만을 얻었으나, 중성자 회절법으로는 $NH_4$ 사면체의 수소/중수소원자의 위치는 물론 H를 치환해서 들어간 D의 점유율을 정련하여 측정시료의 평균화학식이 $LiND_{3.05}H_{0.95}SO_4$임을 밝혔다.

Theoretical Study of the Hydration Effects on the Conformation of N-pivaloyl-L-prolyl-N-methyl-N'-isopropyl-L-alaninamide

  • Choe, Sang-Joon;Kim, Un-Sik;Kang, Young-Kee;Jhon, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • 제5권1호
    • /
    • pp.27-32
    • /
    • 1984
  • To investigate the hydration effects on the conformational changes of N-pivaloly-L-prolyl-N-methyl-N'-isopropyl-L-alanin amide (PPMIA), the conformational free energy changes have been calculated by using an empirical potential function varying all the independent degrees of freedom of PPMIA backbones. It is found that cis conformers are folded by a strong intramolecular hydrogen bond involving both terminal CO and NH groups whereas trans conformers accommodate the open conformation. Conformers in the free state are proved to be less stable than in the hydrated state. The free energy changes of cis and trans PPMIA due to the hydration are -50.5 and -39.8 kcal/mole, their conformational energy changes are -52.3 and -41.0 kcal/mole, and their conformational entropy changes are -5.9 and -4.0 e.u., respectively. The free energy changes of cis PPMIA to trans PPMIA in the free and hydrated states are 5.3 and 16.0 kcal/mole, their conformational energy changes are 7.6 and 18.8 kcal/mole, and the entropy changes due to the conformational transitions correspond to 7.5 and 9.4 e.u., respectively. From these results, it is found that the bound water molecules play an important role in stabilizing the conformation of PPMIA.