In this work, we prepared the Ni-loaded porous SBA-15 (SBA-15) by a depositionprecipitation (D-P) method, in order to enhance the hydrogen storage capacity. The structure and morphology of the Ni/SBA-15 were characterized by X-ray diffraction (XRD) and field emission transmission electron microscopy (FE-TEM). The results showed that, at the Ni loading used at the DP times in the range of 0-120 min, SBA-15 preserved the well-ordered hexagonal porous arrangement. The textural properties of the Ni/SBA-15 were analyzed using N2 adsorption isotherms at 77 K. Specific surface area and mesopore volume of the samples were determined from the Brunauer-Emmett-Teller (BET) equation and Barrett-Joiner-Halenda (BJH) method, respectively. The hydrogen storage capacity of the Ni/SBA-15 was evaluated at 298 K/10 MPa. The hydrogen storage capacity of the Ni/SBA-15 was increased in accordance with Ni content. Consequently, it was found that the presence of Ni on mesoporous SBA-15 created hydrogen-favorable sites which enhanced the hydrogen storage capacity by spillover effect.
In order to characterize the catalytically active sites on carbon black, acetylene chemisorption had been examined recently at 773 and 873 K by using a pulse technique. As the inject ion was repeated at 773 K, the adsorbed amount gradually decreased and eventually the adsorption did not occur any more. At 873 K a constant amount of $C_2H_2$ was consumed repeatedly after several injections. Good linear relationships were obtained between the methane decomposition rate at 1123 or 1173 K and the cumulative acetylene adsorption at 773 K or the constant acetylene consumption at 873 K. Reasonable models for the associative acetylene chemisorption at 773 K and the constant acetylene consumption at 873 K on the armchair face at the edges of graphene layers were proposed. The constant consumpt ion may be explained by the "$C_2H_2$-addition-hydrogen- abstract ion (CAHA)" mechanism.
The Langmuir adsorption isotherms of the over-potentially deposited hydrogen (OPD H) fur the cathodic $H_2$ evolution reaction (HER) at the poly-Au and $Rh|0.5M\;H_2SO_4$ aqueous electrolyte interfaces have been studied using cyclic voltammetric and ac impedance techniques. The behavior of the phase shift $(0^{\circ}{\leq}{-\phi}{\leq}90^{\circ})$ for the optimum intermediate frequency corresponds well to that of the fractional surface coverage $(1{\geq}{\theta}{\geq}0)$ at the interfaces. The phase-shift profile $({-\phi}\;vs.\;E)$ for the optimum intermediate frequency, i.e., the phase-shift method, can be used as a new electrochemical method to determine the Langmuir adsorption isotherm $({\theta}\;vs.\;E)$ of the OPD H for the cathodic HER at the interfaces. At the poly-Au|0.5M $H_2SO_4$ aqueous electrolyte interface, the equilibrium constant (K) and the standard free energy $({\Delta}G_{ads})$ of the OPD H are $2.3\times10^{-6}$ and 32.2kJ/mol, respectively. At the poly-Rh|0.5M $H_2SO_4$ aqueous electrolyte interface, K and ${\Delta}G_{ads}$ of the OPD H are $4.1\times10^4\;or\;1.2\times10^{-2}$ and 19.3 or 11.0kJ/mol depending on E, respectively. In contrast to the poly-Au electrode interface, the two different Langmuir adsorption isotherms of the OPD H are observed at the poly-Rh electrode interface. The two different Langmuir adsorption isotherms of the OPD H correspond to the two different adsorption sites of the OPD H on the poly-Rh electrode surface.
21세기의 새로운 청정 에너지원으로 각광받고 있는 수소의 성공적인 활용을 위해 높은 저장 용량을 갖는 수소 저장체와 효과적인 수소 저장기술의 개발이 필요하다. 본 총설에서는 다양한 수소 저장 방법에 대해 간략히 요약하고 그 가운데 나노세공체를 이용한 저온 물리흡착에 의한 수소 저장기술의 현황에 대해 살펴보았다. 기존에 알려져 있는 고압의 압축 저장기술과 상온 고압의 수소저장 물질의 개발 이외에도 최근에는 높은 표면적과 큰 세공 부피를 갖는 나노세공체를 이용한 저온 물리흡착 방식이 개발 가능한 수소의 저장 기술의 하나로 활발히 연구되고 있다. 본 총설에서는 높은 수소 저장 용량을 위해 필요한 나노세공체의 특성을 요약하였으며 높은 표면적 및 미세 세공부피, 작은 세공 크기, 큰 정전기장 및 불포화 배위자리가 필요함을 알 수 있었다. 최근까지 보고된 나노세공체 흡착제에 의한 수소 저장 능력을 정리하였는데 현재까지 보고된 최고의 결과로는 액체 질소 온도($-196^{\circ}C$)의 약 80 기압에서 약 7.5wt%의 수소를 저장할 수 있다고 알려져 있다. 향후 지속적이고 새로운 나노세공체의 설계, 합성, 제조 및 수식에 대한 노력을 통해 수소에너지 저장에 활용될 수 있는 효과적인 수소 저장체 개발을 기대한다.
0.2M LiOH전해질 내의 다결정 Ir표면에서 저전위 및 과전위 전착된 수소(UPD H및 OPD H)의 전이와 2구별되는 흡착부위를 위상이동 방법을 이용하여 연구하였다 순방향과 역방향 주사시, 순환 전압전류도에 UPD H 봉우리가 나타난다. 위상이동 변화 또는 Langmuir흡착등온식에 전이영역(-0.80 to -0.95 V vs. SCE)이 나타난다. 전이영역(-0.80 to -0.95 V vs. SCE)에서 수소 흡착평형상수(K)는 $7.9\tiems10^{-2}$에서 $1.5\times10^{-4}$또는 $1.5\times10^{-4}$에서 $7.9\times10^{-2}$로 전이한다. 마찬가지로, 수소 흡착표준자유에너지$({\Delta}G_{ads})$도 6.3kJ/mol에서 21.8kJ/mol 또는 21.8kJ/mol에서 6.3kJ/mol로 전이한다. 다결정 Ir표면에서 UPD H와 OPD H는 구별이 가능한 2종류의 전착된 수소같이 작용한다. UPD H봉우리와 전이영역은 다결정 Ir 표면에서 UPD H와 OPD H의 2 구별되는 흡착부위에 기인한다.
We investigated NiFe2O4/Ce0.9Gd0.1O1.95 (GDC) composites as oxygen carrier materials for chemical looping hydrogen production (CLHP). CLHP is a promising technology to simultaneously capture carbon dioxide and produce hydrogen from fossil fuels. We found that increasing GDC content increased the amount of the hydrogen production of NiFe2O4/GDC composites. Moreover, the oxygen transfer rate for the re-dox reaction increased significantly with increasing GDC content. GDC may affect the reaction kinetics of NiFe2O4/GDC composites. The finely dispersed GDC particles on the surface of NiFe2O4 can increase the surface adsorption of reaction gases due to the oxygen vacancies on the surface of GDC, and enlarge the active sites by suppressing the grain growth of NiFe2O4. The NiFe2O4/15wt% GDC composite showed no significant degradation in the oxygen transfer capacity and reaction rate during several re-dox cycles. The calculated amount of hydrogen production for the NiFe2O4/15wt% GDC composite would be 2,702 L/day per unit mass (kg).
본 논문은 계면 전기화학에서의 underpotential deposition (UPD)의 중요성에 초점을 맞추어 UPD의 기본원리에 대하여 다루었다. 우선 underpotential shift와 electrosorption valency에 대한 설명과 함께 UPD의 기본개념을 기술하였다. 다음으로 금속표면에서의 수소발생 또는 금속내부로의 수소흡수 반응 이전에 관찰되는 수소의 UPD를 설명하였고, 특히 금속 표면에서의 흡착위치와 Pd으로의 흡수기구에 대하여 중점적으로 기술하였다. 마지막으로, 계면 전기화학의 여러 분야에서 UPD와 관련된 중요한 인자들을 응용적인 측면에서 간략히 설명하였다.
Kamble, Girish;Malavekar, Dhanaji;Jang, Suyoung;Kim, Jin Hyeok
한국재료학회지
/
제32권10호
/
pp.408-413
/
2022
The oxygen evolution reaction (OER) is very sluggish compared to the hydrogen evolution reaction (HER). Considering this difference is essential when designing and developing a cost-effective and facile synthesis method for a catalyst that can effectively perform OER activity. The material should possess a high surface area and more active sites. Considering these points, in this work we successfully synthesized sheets of cobalt phosphate hydrate (CP) and sulphurated cobalt phosphate hydrate (CPS) material, using simple successive ionic layered adsorption and reaction (SILAR) methods followed by sulfurization. The CP and CPS electrodes exhibited overpotentials of 279 mV with a Tafel slope of 212 mV dec-1 and 381 mV with a Tafel slope of 212 mV dec-1, respectively. The superior performance after sulfurization is attributed to the intrinsic activity of the deposited well-aligned nanosheet structures, which provided a substantial number of electrochemically active surface sites, speeded electron transfer, and at the same time improved the diffusion of the electrolyte.
As S. epidermidis cell was fractionated into cell wall, cell membrane, and cytoplasm, the cell membrane proved to be the most efficient absorbent for lead ion. Utrasonication was effective, when the cells were treated during their exponential growth. The amount of the lead ion adsorbed in cell membrane decreased as hydrogen ion concentration of solution increased. Protein purified from the cell membrane showed higher adsorption capacity for the lead ion than peptidoglycan, teichoic acid from cell wall, or cell membrane lipid. Modification of carboxyl groups in the membrane protein with ethylenediamine and 1-ethyl-3-carbodiimide hydrochloride resulted in a considerable decrease of lead ion adsorption capability, suggesting that the main binding site for lead ion was the carboxyl groups of protein in cell membrane.
순환전압전류 및 교류임피던스 기법을 이용하여 다결정 Pt/0.5M $H_2SO_4$ 및 0.5M LiOH수용액 계면에서 저전위 수소흡착(UPD H) 과 전위 수소흡착(OPD H)에 관한 Langmuir 흡착등온식 $({\theta}\;vs.\;E)$ 을 연구조사 하였다. 계면에서 치적중간주파수일 때 위상이동$(0^{\circ}{\leq}{-\phi}{\leq}90^{\circ})$ 거동은 표면피복율$(1{\geq}{\theta}{\geq}0)$ 거동에 정확하게 상응한다. 위상이 동 방법 즉 최적중간주파수일 때 위상이동 변화$({-\phi}\;vs.\;E)$는 계면에서 음극 $H_2$ 발생 반응에 관한 UPD H와 OPDH의 Langmuir흡착등온식을 결정할 수 있는 새로운 전기화학적 방법으로 사용할 수 있다 다결정 Pt/0.5M $H_2SO_4$ 수용액 계면에서 OPD H의 흡착평형상수(K)와 표준자유에너지$({\Delta}G_{ads})$는 각각 $2.1\times10^{-4}$와 21.0kJ/mol 이다. 다결정 Pt/0.5M LiOH 수용액 계면에서 K는 음전위(E)에 따라 2.7 (UPD H)에서 $6.2\times10^{-6}$ (OPD H) 또는 $6.2\times10^{-6}$(OPD H)에서 2.7 (UPD H)로 전이한다. 유사하게 ${\Delta}G_{ads}$는 E에 따라 -2.5kJ/mol (UPD H)에서 29.7kJ/mol (OPD H)또는 29.7kJ/mol (OPD H)에서 -2.5kJ/mol (UPD H)로 전이한다. K와 ${\Delta}G_{ads}$의 전이는 다결정 Pt전극 표면의 상이한 UPD H와 OPD H의 흡착부위에 기인한다. 다결정 Pt전극 계면에서 UPD H와 OPD H는 음극 $H_2$ 발생 반응에 따른 순차적 과정이 아니라, 수소 흡착부위 자체에 따른 독립적 과정이다. UPD H와 OPD H의 기준은 음극 $H_2$발생 반응과 전위가 아니라, 수소 흡착부위와 과정이다. 수용액에서 음극 $H_2$발생 반응에는 다결정 Pt선 전극이 단결정 Pt(100)원반 전극보다 더 효율적이고 유용하다 위상이동 방법은 열역학적 방법과 상충적이 아니라, 보완적이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.