Browse > Article
http://dx.doi.org/10.3740/MRSK.2022.32.10.408

Effect of Sulfurization on SILAR Synthesized Cobalt Phosphate Hydrate Nanosheets for Oxygen Evolution Reaction  

Kamble, Girish (Optoelectronic Convergence Research Center, Department of Materials Science and Engineering, Chonnam National University)
Malavekar, Dhanaji (Optoelectronic Convergence Research Center, Department of Materials Science and Engineering, Chonnam National University)
Jang, Suyoung (Optoelectronic Convergence Research Center, Department of Materials Science and Engineering, Chonnam National University)
Kim, Jin Hyeok (Optoelectronic Convergence Research Center, Department of Materials Science and Engineering, Chonnam National University)
Publication Information
Korean Journal of Materials Research / v.32, no.10, 2022 , pp. 408-413 More about this Journal
Abstract
The oxygen evolution reaction (OER) is very sluggish compared to the hydrogen evolution reaction (HER). Considering this difference is essential when designing and developing a cost-effective and facile synthesis method for a catalyst that can effectively perform OER activity. The material should possess a high surface area and more active sites. Considering these points, in this work we successfully synthesized sheets of cobalt phosphate hydrate (CP) and sulphurated cobalt phosphate hydrate (CPS) material, using simple successive ionic layered adsorption and reaction (SILAR) methods followed by sulfurization. The CP and CPS electrodes exhibited overpotentials of 279 mV with a Tafel slope of 212 mV dec-1 and 381 mV with a Tafel slope of 212 mV dec-1, respectively. The superior performance after sulfurization is attributed to the intrinsic activity of the deposited well-aligned nanosheet structures, which provided a substantial number of electrochemically active surface sites, speeded electron transfer, and at the same time improved the diffusion of the electrolyte.
Keywords
cobalt phosphate; chemical bath sulfurization; successive ionic layered adsorption and reaction; oxygen evolution reaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. He, M. Li, W. Qiao and L. Feng, Chem. Eng. J., 423, 130168 (2021).   DOI
2 H. Yang, L. Gong, H. Wang, C. Dong, J. Wang, K. Qi, H. Liu, X. Guo and B. Y. Xia, Nat. Commun., 11, 1 (2020).   DOI
3 M. Caban-Acevedo, M. L. Stone, J. R. Schmidt, J. G. Thomas, Q. Ding, H.-C. Chang, M.-L. Tsai, J.-H. He and S. Jin, Nat. Mater., 14, 1245 (2015).   DOI
4 X. Xia, L. Wang, N. Sui, V. L. Colvin and W. W. Yu, Nanoscale, 12, 12249 (2020).   DOI
5 S. S. Siwal, W. Yang and Q. Zhang, J. Energy Chem., 51, 113 (2020).   DOI
6 Q. Liu, J. Tian, W. Cui, P. Jiang, N. Cheng, A. M. Asiri and X. Sun, Angew. Chem., 53, 6710 (2014).   DOI
7 S. Surendran, S. Shanmugapriya, P. Zhu, C. Yan, R. H. Vignesh, Y. S. Lee, X. Zhang and R. K. Selvan, Electrochim. Acta, 296, 1083 (2019).   DOI
8 J. Jiang, S. Lu, W. K. Wang, G. X. Huang, B. C. Huang, F. Zhang, Y. J. Zhang and H. Q. Yu, Nano Energy, 43, 300 (2018).   DOI
9 S. Cobo, J. Heidkamp, P.-A. Jacques, J. Fize, V. Fourmond, L. Guetaz, B. Jousselme, V. Ivanova, H. Dau, S. Palacin, M. Fontecave and V. Artero, Nat. Mater., 11, 802 (2012).   DOI
10 Y. Xiao, Y. Pei, Y. Hu, R. Ma, D. Wang and J. Wang, Wuli Huaxue Xuebao/Acta Phys. - Chim. Sin., 37, 1 (2021).
11 S. Wang, L. Zhao, J. Li, X. Tian, X. Wu and L. Feng, J. Energy Chem., 66, 483 (2022).   DOI
12 B. Tang, X. Yang, Z. Kang and L. Feng, Appl. Catal., B, 278, 119281 (2020).   DOI
13 S. Chu and A. Majumdar, Nature, 488, 294 (2012).   DOI
14 N. Armaroli and V. Balzani, ChemSusChem, 4, 21 (2011).   DOI