• 제목/요약/키워드: Hydrogen addition

검색결과 1,561건 처리시간 0.024초

수소를 첨가한 탄화수소 혼합기의 난류연소 특성에 관한 실험적 연구 (An Experimental Study on the Turbulent Combustion Characteristics of Hydrocarbon Mixtures by Hydrogen Addition)

  • 김준효;한원희;키도히로유끼
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.65-72
    • /
    • 2003
  • In order to clarify turbulent combustion characteristics of hydrocarbon mixtures by hydrogen addition, turbulent burning velocities in a constant volume vessel were measured for both lean and rich hydrocarbon mixtures. Moreover, the configuration characteristics of turbulent flame was investigated in the wrinkled laminar flame region. A laser tomography technique was used to obtain the images of turbulent flame, and quantitative analyses were performed. As a result, the characteristics of turbulent burning velocity was shown a distinct difference with the addition rate of hydrogen between lean and rich mixtures. On the other hand, the obtained tomograms showed that the surface area of turbulent flame depends almost only on the turbulence intensity.

메탄-공기 예혼합 선회화염에서 수소첨가와 선회강도 영향에 관한 연구 (A Study on the Effects of Hydrogen Addition and Swirl Intensity in CH4-Air Premixed Swriling Flames)

  • 김한석;조주형;김민국;황정재;이원준
    • 한국수소및신에너지학회논문집
    • /
    • 제30권6호
    • /
    • pp.593-600
    • /
    • 2019
  • The combustion characteristics of methane/hydrogen pre-mixed flame have been investigated with swirl stabilized flame in a laboratory-scale pre-mixed combustor with constant heat load of 5.81 kW. Hydrogen/methane fuel and air were mixed in a pre-mixer and introduced to the combustor through a burner nozzle with different degrees of swirl angle. The effects of hydrogen addition and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using particle image velocimetry (PIV), micro-thermocouples, various optical interference filters and gas analyzers to provide information about flow velocity, temperature distributions, and species concentrations of the reaction field. The results show that higher swirl intensity creates more recirculation flow, which reduces the temperature of the reaction zone and, consequently, reduces the thermal NO production. The distributions of flame radicals (OH, CH, C2) are dependent more on the swirl intensity than the percentage of hydrogen added to methane fuel. The NO concentration at the upper part of the reaction zone is increased with an increase in hydrogen content in the fuel mixture because higher combustibility of hydrogen assists to promote faster chemical reaction, enabling more expansion of the gases at the upper part of the reaction zone, which reduces the recirculation flow. The CO concentration in the reaction zone is reduced with an increase in hydrogen content because the amount of C content is relatively decreased.

메탄-공기 확산화염에서 수소와 수증기 첨가가 화염구조와 NOx 배출에 미치는 효과 (Effects of Addition of Hydrogen and Water Vapor on Flame Structure and NOx Emission In $CH_4$-Air Diffusion Flame)

  • 박정;길상인;윤진한
    • 한국수소및신에너지학회논문집
    • /
    • 제18권2호
    • /
    • pp.171-181
    • /
    • 2007
  • Blending effects of hydrogen and water vapor on flame structure and NOx emission behavior are numerically studied with detailed chemistry in methane-air counterflow diffusion flames. The composition of fuel is systematically changed from pure methane and pure hydrogen to the blending fuels of methane-hydrogen-water vapor through the molar addition of $H_2O$. Flame structure is changed considerably for hydrogen-blending methane flames and hydrogen-blending methane flames diluted with water vapor in comparison to pure methane flame. These complicated changes of flame structures also affect NOx emission behavior considerably. The changes of thermal NO and Fenimore NO are analyzed for various combinations of the fuel composition. Importantly contributing reaction steps to thermal NO and Fenimore NO are addressed in pure methane, hydrogen-blending methane flames, and hydrogen-blending methane flames diluted with water vapor.

수소 첨가에 따른 30kW급 가스엔진 발전기의 발전효율 및 질소산화물 배출량 특성 연구 (A Study on the Generating Efficiency and NOx Emissions of a 30kW Gas Engine Generator with Hydrogen Addition)

  • 차효석;김태수;엄태준;전광민;송순호
    • 한국수소및신에너지학회논문집
    • /
    • 제22권3호
    • /
    • pp.313-318
    • /
    • 2011
  • This study is about characteristics of generating efficiency and $NO_x$ emissions of a 30 kW gas engine generator in case of using model biogas with hydrogen addition. In this case, both generating efficiency and $NO_x$ emissions are lower than the case of using urban gas (LNG). However, generating efficiency and $NO_x$ emissions are higher than the case of using model biogas only. It means that adding hydrogen which has a high flame propagation velocity has the possibility to improve the generating efficiency, but simultaneously it is also able to increase the $NO_x$ emissions of a gas engine generator.

질산염을 함유한 폐수의 상향류식 공법에 의한 혐기성 처리 (Anaerobic Treatment of Wastewater containing Nitrate by Upflow Process)

  • 이원식;은종극
    • 환경위생공학
    • /
    • 제13권2호
    • /
    • pp.95-105
    • /
    • 1998
  • This research was investigated which denitrification of wastewater containing nitrate, using upflow anaerobic sludge blanket process. The upflow anaerobic sludge blanket process is also used for both artifical and industrial wastewater. Main ingredients investigated in the artifical and industrial wastewater experiment were the determination of optimum organism/nitrate ratios, nitrate removal efficiency by various hydrogen donor addition and characteristics of granular sludge and gas production in case of various hydrogen donor addition. From the experimental results the following conclusions were made: In case of adding methanol, ethanol and sodium acetate as hydrogen donor granular sludge was formed 50 days after seeding. Average diameter of granular sludge was 4.0 mm and settling velocity was 37 cm/min. Production rate of gas 3.3 L/d in case of adding methanol as hydrogen donor in wastewater containing 150mg/L nitrate. However adding ethanol and sodium acetate as hydrogen donor, gas production rate were 2.2-2.7L/d respectively. In case of adding methanol as hydrogen donor treatability of artifical wastewater contained 150mg/L as nitrate was about 93%. But in addition of sodium acetate in wastewater contained 40mg.L as nitrate, nitrate removal efficiency was 80%.

  • PDF

수소산업 전주기 인프라시설 안전성 분석 (Hydrogen Industry Cycle Infrastructure Safety Analysis)

  • 박우일;최슬기;이인우;강승규
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.795-802
    • /
    • 2022
  • Korea is showing its appearance as a leading country in the hydrogen economy by establishing policies for revitalizing the hydrogen economy and enacting the 「Hydrogen Economy Promotion and Hydrogen Safety Management Act」 for the first time in the world. In addition, domestic hydrogen facilities are using hydrogen energy safely through world-class safety management compared to overseas advanced countries. However, in order to enhance the safety of the rapidly diversifying hydrogen industry and rapid technology development, such as the introduction of liquefied hydrogen, some institutional improvements are needed. In this regard, this paper intends to analyze the results of safety inspections on 13 representative facilities and prepare safety improvement plans to establish preemptive safety measures.

$ {\alpha}$-Cyano-$ {\beta}$-Piperonylacrylic Acid에 대한 Hydrogen Cyanide의 친핵성 첨가반응에 관한 연구 (The Kinetics and Mechanism of Nucleophilic Addition of Hydrogen Cyanide to $ {\alpha}$-Cyano-$ {\beta}$-piperonylacrylic Acid)

  • 권기성;김태린
    • 대한화학회지
    • /
    • 제18권6호
    • /
    • pp.423-429
    • /
    • 1974
  • $ {\alpha}$-Cyano-$ {\beta}$-piperonylacrylic acid(CPA)에 대한 hydorogen cyanide의 진핵성 첨가 반응속도 상수를 측정하여 넓은 pH범위에서 잘 맞는 반응 속도식을 구하였다. 이 식에 의하면 pH3이하에서는 CPA에 대해 hydrogen cyanide분자의 첨가 반응이 일어나지만 pH6에서 8사이는 hydrogen cyanide가 $ {\alpha}$-cyano-$ {\beta}$-piperonyl acrylate ion에 첨가함을 알수 있고, 또 pH 3과 6사이에서는 이들 두 반응이 경쟁적으로 일어난다. 그리고 pH9이상에서는 $ {\alpha}$-cyano-$ {\beta}$-piperonyl acrylate ion에 cyanide ion이 첨가하는 반응이 일어나며 pH3에서 9까지의 모든 복잡한 반응 메카니즘도 이식으로 충분히 설명할 수 있음을 알았다.

  • PDF

Effects of $\beta$-Mercaptoethanol and Hydrogen Peroxide on Enzymatic Conversion of Human Proinsulin to Insulin

  • Son, Young-Jin;Kim, Chang-Kyu;Choi, Byoung-Taek;Park, Yong-Cheol;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권5호
    • /
    • pp.983-989
    • /
    • 2008
  • Human insulin is a hormone well-known to regulate the blood glucose level. Recombinant preproinsulin, a precursor of authentic insulin, is typically produced in E. coli as an inactive inclusion body, the solubilization of which needs the addition of reducing agents such as $\beta$-mercaptoethanol. To make authentic insulin, recombinant preproinsulin is modified enzymatically by trypsin and carboxypeptidase B. The effects of $\beta$-mercaptoethanol on the formation of human insulin derivatives were investigated in the enzymatic modification by using commercially available human proinsulin as a substrate. Addition of 1 mM $\beta$-mercaptoethanol induced the formation of various insulin derivatives. Among them, the second major one, impurity 3, was found to be identical to the insulin B chain fragment from $Phe_1$ to $Glu_{21}$. Minimization of the formation of insulin derivatives and concomitant improvement of the production yield of human insulin were achieved by the addition of hydrogen peroxide. Hydrogen peroxide bound with $\beta$-mercaptoethanol and thereby reduced the negative effects of $\beta$-mercaptoethanol considerably. Elimination of the impurity 3 and other derivatives by the addition of over 10 mM hydrogen peroxide in the presence of $\beta$-mercaptoethanolled to a 1.3-fold increase in the recovery efficiency of insulin, compared with those for the case without hydrogen peroxide. The positive effects of hydrogen peroxide were also confirmed with recombinant human preproinsulin expressed in recombinant E. coli as an inclusion body.

Mesh-type PECVD를 이용한 DC-bias인가 및 수소가스 첨가에 따른 저수소화 비정질 실리콘 박막에 관한 연구 (The Properties of Low Hydrogen Content α-Si Thin Film Using DC-bias Enhanced or Addition of H2Gas in Mesh-type PECVD System)

  • 류세원;권도현;박성계;남승의;김형준
    • 한국재료학회지
    • /
    • 제12권4호
    • /
    • pp.235-239
    • /
    • 2002
  • In this study mesh-type PECVD system was suggested to minimize the hydrogen concentration. The main structural difference between the triode system and a conventional system is that, a third electrode, a mesh, is inserted between the powered and the ground electrode. We investigated several conditions to compare with conventional PECVD. The main effect of mesh was to minimize the substrate damage by ion bombardment and to enhance the surface reaction to induce hydrogen desorption. It was also found that hydrogen concentration decreased but deposition rate increased as increasing applied bias. Applied DC-bia s enhanced sputtering process. Intense ion bombardment causes the weakly bonded hydrogen or hydrogen-containing species to leave the growing film and increased adatom mobility. Furthermore, addition of hydrogen gas enhance the surface diffusion of adatom.

고장력강의 용접부에서 Yttrium을 이용한 수소의 트랩에 관한 연구 (Hydrogen Trapping Using Yttrium to Manage Hydrogen in HSLA Steel Welds)

  • 박영도
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.141-143
    • /
    • 2005
  • Yttrium has been investigated as hydrogen trapping site in pure iron and HSLA steel welds. Assessment of hydrogen trapping parameters for yttrium oxide has also shown the high potential of yttrium addition to improve hydrogen management in high strength steel welding. The purpose of this study was to reduce and control the diffusible hydrogen content in the weld deposit.

  • PDF