• Title/Summary/Keyword: Hydrogen Storage Alloy

Search Result 127, Processing Time 0.019 seconds

Technology Trend for Carbon Nanomaterials Hydrogen Storage by the Patent Analysis (특허분석에 의한 탄소 나노재 수소저장 기술 동향)

  • Park, Soo-Jin;Lee, Young-Seak;Kang, Kyung-Seok;Choi, Mi-Jeong;Kim, Jong-Wook
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.1
    • /
    • pp.77-89
    • /
    • 2008
  • There are several materials for the hydrogen storage such as hydrogen storage alloy, carbon nanomaterials, non-carbon nanomaterials, compounds etc. Efficient and inexpensive hydrogen storage is an essential prerequisite for the utilization of hydrogen, one of the new and clean energy sources. Many researches have been widely performed for the hydrogen storage techniques and materials having high storage capacity and stability. In this paper, the patents concerning the carbon nanomaterial hydrogen storage method were gathered and analyzed. The search range was limited in the open patents of Korea(KR), Japan(JP), USA(US) and European Union(EP) from 1996 to 2006. Patents were gathered by using key-words searching and filtered by filtering criteria. The trends of the patents was analyzed by the years, countries, companies, and technologies.

Hydrogen Storage Characteristics of Melt Spun Mg-23.5Ni-xCu Alloys and Mg-23.5Ni-2.5Cu Alloy Mixed with $Nb_{2}O_{5}$ and $NbF_{5}$

  • Hong, Seong-Hyeon;Kwon, Sung-Nam;Song, Myoung Youp
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.298-303
    • /
    • 2011
  • Mg-23.5 wt%Ni-xwt%Cu (x = 2.5, 5 and 7.5) samples for hydrogen storage were prepared by melt spinning and crystallization heat treatment from a Mg-23.5 wt%Ni-5 wt%Cu alloy synthesized by the gravity casting method. They were then ground under $H_2$ to obtain a fine powder. Among these samples the Mg-23.5Ni-2.5Cu sample had the highest hydriding and dehydriding rates after activation. The Mg-23.5Ni-2.5Cu sample absorbed 3.59 and 4.01 wt%H for 10 and 60 min, respectively, at 573K under 12 bar $H_{2}$. The activated 88(87.5Mg-10Ni-2.5Cu)-$5Nb_{2}O_{5}-7NbF_{5}$ sample absorbed 2.93 wt%H for 10 min, and 3.14 wt%H for 60 min at 573K under 12 bar $H_{2}$.

Hydriding Behavior of an Mg-xNi Alloys Prepared in Hydriding Combustion Synthesis (수소화 연소합성법을 이용한 Mg-xNi 금속수소화물의 수소저장특성에 관한 연구)

  • Kim, Ji-Ho;Choi, Duck-Kyun;Hwang, Kwang-Taek;Han, Jeong-Sub;Kim, Jin-Ho
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.2
    • /
    • pp.123-128
    • /
    • 2010
  • Hydriding combustion synthesis (HCS) can produce full hydrides of alloys and in a short time. The conventional process based on ingot metallurgy cannot produce Mg-based alloy easily with the desired composition and the cast product needs a ling activation process for the practical use of hydrogen storage. In this study, the hydriding properties of Mg-xNi (x=5, 13.5, 54.7wt.%) alloys prepared by hydriding combustion synthesis were evaluated. The hydrogen storage capacity and kinetics of HCS Mg-xNi alloys were strongly dependent on the content of Ni. The HCS Mg-13.5wt.%Ni alloy shows the hydriding behavior to reach the maximum capacity within 30 min. and the reversible $H_2$ storage of 5.3wt.% at 623 K.

Development of Mg-18wt.%Ni-Hydrogen-Storage Alloy by Mechanical Alloying (기계적인 합금화에 의한 Mg-18wt.%Ni 수소저장합금의 개발)

  • Song, Myoung-Youp;Ahn, Dong-Su;Kwon, Ik-Hyun;Ahn, Hyo-Jun
    • Korean Journal of Materials Research
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 2000
  • The hydrogen-storage properties of a mechanically-alloyed Mg-18wt.%Ni mixture were investigated. Among the mixtures mechanically alloyed for 1h, 3h, and 6h, the mixture mechanically alloyed for 6h(MA 6h sample) shows the best properties of activation, hydriding, and dehydriding. The $Mg_2Ni$ phase forms in the mechanically-alloyed Mg-18wt.%Ni mixture along with hydriding-dehydriding cycling. The MA 6h sample is relatively easily activated and has higher hydriding rate than the pure Mg, the Mg-10wt.%Ni alloy, and a little lower hydriding rate than the $Mg_2Ni$alloy. The MA 6h sample lower dehydriding rate than the $Mg_2$Ni alloy but higher dehydriding rate than the pure Mg and the Mg-25wt.%Ni alloy. The MA 6h sample has larger hydrogen-storage capacity than the pure Mg and the other alloys.

  • PDF

Development of an Mg-Based Alloy with a Hydrogen-Storage Capacity over 6 wt% by Adding Graphene

  • Choi, Eunho;Kwak, Young Jun;Song, Myoung Youp
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1403-1411
    • /
    • 2018
  • Graphene (multilayer graphene) was chosen as an additive to improve the hydrogen uptake and release properties of magnesium (Mg). Five weight percent of graphene was added to pre-milled Mg by milling in hydrogen (reaction-involving milling). The hydrogen uptake and release properties of the graphene-added Mg were investigated. The activation of Mg-5graphene, which was prepared by adding 5 wt% graphene to Mg pre-milled for 24 h, was completed after the second cycle (cycle number, CN=2). Mg-5graphene had a high effective hydrogen-storage capacity (the quantity of hydrogen absorbed for 60 min) of 6.21 wt% at CN=3 at 593 K in 12 bar $H_2$. At CN=1, Mg-5graphene released 0.46 wt% hydrogen for 10 min and 4.99 wt% hydrogen for 60 min. Milling in hydrogen is believed to create defects (leading to facilitation of nucleation), produce cracks and clean surfaces (leading to increase in reactivity), and decrease particle size (leading to diminution of diffusion distances or increasing the flux of diffusing hydrogen atoms). The added graphene is believed to have helped the sample have higher hydrogen uptake and release rates, weakly but partly, by dispersing heat rapidly.

Performance of a direct methanol fuel cell (DMFCs)Using Nation 115 (Nafion 115를 사용한 DMFC MEA 의 성능실험)

  • Choi, Hoon;Hwang, Yong-Sheen;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.43-46
    • /
    • 2007
  • To find out the optimum design of hydrogen storage and supply tank using Metal Hydride (briefly MH) and to make clear the performance characteristics under various conditions are our research purpose. In order to use the low-temperature exhaust heat, $LaNi_{4.7}Al_{0.3}$ which operates under the low pressure of 1MPa is chosen, and we measure the basic properties, namely density, specific heat, PCT(Pressure-Concentration-Temperature) characteristic, and effective thermal conductivity. Then, a numerical calculation model of hydrogen storage using MH alloy is suggested and this thermal diffusion equation of model is solved by the backward difference method. This calculation results rate compared with the experimental results of the systems which installed 1kg MH alloy and, it is found out that our calculation model can well predict the experimental results. By the experimental using MH alloy, it is recognized that the hydrogen flow rate can control by the step adjustment of brine temperature.

  • PDF

Hydrogen Storage and Release Properties for Compacted Ti-Mn Alloy (컴팩션된 Ti-Mn계 합금의 수소저장 및 방출 특성)

  • KIM, JONG SEOK;HAN, WON BI;CHO, HYUN SUK;JEONG, MOON SUN;JEONG, SEONG UK;CHO, WON CHUL;KANG, KYOUNG SOO;KIM, CHANG HEE;BAE, KI KWANG;KIM, JONG WON;PARK, CHU SIK
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.1
    • /
    • pp.9-16
    • /
    • 2017
  • Hydrogen forms metal hydrides with some metals and alloys leading to solid-state storage under moderate temperature and pressure that gives them the safety advantage over the gas and liquid storage methods. However, it has disadvantages of slow hydrogen adsorption-desorption time and low thermal conductivity. To improve characteristics of metal hydrides, it is important that activation and thermal conductivity of metal hydrides are improved. In this study, we have been investigated hydrogen storage properties of Hydralloy C among Ti-Mn alloys. Also, the characteristics of activation and thermal conductivity of Hydralloy C were enhanced to improve kinetics of hydrogen adsorption-desorption. As physical activation method, PHEM (planetary high energy mill) was performed in Ar or $H_2$ atmosphere. Hydralloy C was also activated by $TiCl_3$ catalyst. To improve thermal conductivity, various types of ENG (expanded natural graphite) were used. The prepared samples were compacted at pressure of 500 bar. As a result, the activation properties of $H_2$ PHEM treated Hydralloy C was better than the other activation methods. Also, the amounts of hydrogen storage showed up to 1.6 wt%. When flake type ENG was added to Hydralloy C, thermal conductivity and hydrogen storage properties were improved.

Development of Mg-10wt.%Ni Hydrogen-Storage Alloy by Mechanical Alloying (기계적인 합금에 의한 Mg-10wt.%Ni 수소저장합금의 개발)

  • Song, MyoungYoup
    • Journal of Hydrogen and New Energy
    • /
    • v.9 no.4
    • /
    • pp.143-150
    • /
    • 1998
  • The hydriding and dehydriding properties of a Mg-10wt.%Ni mixture, mechanically-alloyed in order to improve the hydriding and dehydriding kinetics of pure Mg, were investigated. The $Mg_2Ni$ phase develops along with hydriding-dehydriding cycling. The principal effects of mechanical alloying in a planetary mill and hydriding-dehydriding cycling are considered to be the augmentation in the density of defects and the enlargement in the specific surface area. The mechanically-alloyed Mg-10wt.%Ni mixture is activated easily. It has much higher hydriding rate and hydrogen-storage capacity and relatively high dehydriding rate as compared with the pure Mg, the Mg-10wt.%Ni alloy, the Mg-25wt.%Ni alloy and the $Mg_2Ni$ alloy.

  • PDF

Study on the Improvement of the Electrochemical Characteristics of Surface-modified V-Ti-Cr alloy by Ball-milling

  • Kim, Jin-Ho;Lee, Sang-Min;Lee, Ho;Lee, Paul S.;Lee, Jai-Young
    • Journal of Hydrogen and New Energy
    • /
    • v.12 no.1
    • /
    • pp.39-50
    • /
    • 2001
  • Vanadium based solid solution alloys have been studied as a potential negative electrode of Ni/MH battery due to their high hydrogen storage capacity. In order to improve the kinetic property of V-Ti alloy in KOH electrolyte, the ball-milling process with Ni, which has a catalytic effect of hydrogen absorption/desorption, was carried out to modify the surface properties of V-Ti-Cr alloys with high hydrogen storage capacity. Moreover, to overcome the problem of poor cycle life, V-Ti alloy substituted by Cr, V0.68 Ti0.20 Cr0.12, has been developed showing a good cycle performance (keeping about 80 % of initial discharge capacity after 200 cycles). The cycle life of surface-modified V0.68 Ti0.20 Cr0.12 alloy was improved by suppressing the formation of TiO2 layer on the alloy surface while decreasing the amount of dissolved vanadium in the KOH electrolyte. In order to promote the effect of Ni coating on the surface property of V0.68 Ti 0.20 Cr 0.12 alloy by ball-milling, filamentary-typed Ni, which has higher surface coverage area than sphere-typed Ni was used as a surface modifier. Consequently, the surface-modified V0.68 Ti0.20 Cr0.12 alloy electrode showed a improved discharge capacity of 460 mAh/g.

  • PDF

Technology Trend for Non-carbon Nanomaterials Hydrogen Storage by the Patent Analysis (특허분석에 의한 비탄소계 나노재료 수소저장 기술 동향)

  • Lee, Jin-Bae;Kang, Kyung-Seok;Han, Hye-Jeong;Kim, Jong-Wook;Kim, Hae-Jin
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.3
    • /
    • pp.248-259
    • /
    • 2008
  • There are several well-known materials for the hydrogen storage such as metallic alloy, carbon nanomaterials, non-carbon nanomaterials, and compounds etc. Efficient and inexpensive hydrogen storage methods are an essential prerequisite for the utilization of hydrogen, one of the new and clean energy sources. Many researches have been widely performed for the hydrogen storage techniques and materials to improve the high storage capacity and stability. In this paper, the patents concerning the non-carbon nanomaterial hydrogen storage method were collected and analyzed. The search range was limited in the open patents of Korea(KR), Japan(JP), USA(US) and European Union(EP) from 1996 to 2007. Patents were collected by using key-words searching and filtered by filtering criteria. The trends of the patents was analyzed by the years, countries, companies. and technologies.