DOI QR코드

DOI QR Code

Hydrogen Storage Characteristics of Melt Spun Mg-23.5Ni-xCu Alloys and Mg-23.5Ni-2.5Cu Alloy Mixed with $Nb_{2}O_{5}$ and $NbF_{5}$

  • Hong, Seong-Hyeon (Powder Materials Technology Group, KIMS, Korea Institute of Machinery and Materials) ;
  • Kwon, Sung-Nam (Division of Advanced Materials Engineering, Department of Hydrogen and Fuel Cells, Hydrogen & Fuel Cell Research Center, Engineering Research Institute, Chonbuk National University) ;
  • Song, Myoung Youp (Division of Advanced Materials Engineering, Department of Hydrogen and Fuel Cells, Hydrogen & Fuel Cell Research Center, Engineering Research Institute, Chonbuk National University)
  • Received : 2010.11.25
  • Published : 2011.04.25

Abstract

Mg-23.5 wt%Ni-xwt%Cu (x = 2.5, 5 and 7.5) samples for hydrogen storage were prepared by melt spinning and crystallization heat treatment from a Mg-23.5 wt%Ni-5 wt%Cu alloy synthesized by the gravity casting method. They were then ground under $H_2$ to obtain a fine powder. Among these samples the Mg-23.5Ni-2.5Cu sample had the highest hydriding and dehydriding rates after activation. The Mg-23.5Ni-2.5Cu sample absorbed 3.59 and 4.01 wt%H for 10 and 60 min, respectively, at 573K under 12 bar $H_{2}$. The activated 88(87.5Mg-10Ni-2.5Cu)-$5Nb_{2}O_{5}-7NbF_{5}$ sample absorbed 2.93 wt%H for 10 min, and 3.14 wt%H for 60 min at 573K under 12 bar $H_{2}$.

Keywords

Acknowledgement

Supported by : Ministry of Science and Technology

References

  1. J. S. Han and K. D. Park, Kor. J. Met. Mater. 48, 1123 (2010).
  2. J. J. Reilly and R. H. Wiswall, Inorg. Chem. 6, 2220 (1967). https://doi.org/10.1021/ic50058a020
  3. J. J. Reilly and R. H. Wiswall Jr, Inorg. Chem. 7, 2254 (1968). https://doi.org/10.1021/ic50069a016
  4. D. L. Douglass, Metall. Trans. A: Phys. Metall. Mater. Sci. 6A, 2179 (1975).
  5. M. H. Mintz, Z. Gavra, and Z. Hadari, J. Inorg. Nucl. Chem. 40, 765 (1978). https://doi.org/10.1016/0022-1902(78)80147-X
  6. M. Pezat, B. Darriet, and P. Hagenmuller, J. Less-Common Met. 74, 427 (1980). https://doi.org/10.1016/0022-5088(80)90181-2
  7. E. Akiba, K. Nomura, S. Ono, and S. Suda, Int. J. Hydrogen Energy 7, 787 (1982). https://doi.org/10.1016/0360-3199(82)90069-6
  8. B. Tanguy, J. L. Soubeyroux, M. Pezat, J. Portier, and P. Hagenmuller, Mater. Res. Bull. 11, 1441 (1976). https://doi.org/10.1016/0025-5408(76)90057-X
  9. F. G. Eisenberg, D. A. Zagnoli, and J. J. Sheridan III, J. Less-Common Met. 74, 323 (1980). https://doi.org/10.1016/0022-5088(80)90170-8
  10. J.-L. Bobet, E. Akiba, Y. Nakamura, and B. Darriet, Int. J. Hydrogen Energy 25, 987 (2000). https://doi.org/10.1016/S0360-3199(00)00002-1
  11. J. Huot, M.-L. Tremblay, and R. Schulz, J. Alloys Compd. 356, 603 (2003).
  12. C. D. Yim, B. S. You, Y. S. Na, and J. S. Bae, Catal. Today 120, 276 (2007). https://doi.org/10.1016/j.cattod.2006.09.020
  13. H. Gu, Y. Zhu, and L. Li, Int. J. Hydrogen Energy 34, 2654 (2009). https://doi.org/10.1016/j.ijhydene.2009.01.068
  14. S. A. Jin, J. H. Shim, Y. W. Cho, and K. W. Yi, J. Power Sources 172, 859 (2007). https://doi.org/10.1016/j.jpowsour.2007.04.090
  15. M. Y. Song, S. H. Baek, J.-L. Bobet, and S. H. Hong, Int. J. Hydrogen Energy 35, 10366 (2010). https://doi.org/10.1016/j.ijhydene.2010.07.161
  16. M. Y. Song and H. R. Park, J. Alloys Compd. 270, 164 (1998). https://doi.org/10.1016/S0925-8388(98)00459-9