Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.4.298

Hydrogen Storage Characteristics of Melt Spun Mg-23.5Ni-xCu Alloys and Mg-23.5Ni-2.5Cu Alloy Mixed with $Nb_{2}O_{5}$ and $NbF_{5}$  

Hong, Seong-Hyeon (Powder Materials Technology Group, KIMS, Korea Institute of Machinery and Materials)
Kwon, Sung-Nam (Division of Advanced Materials Engineering, Department of Hydrogen and Fuel Cells, Hydrogen & Fuel Cell Research Center, Engineering Research Institute, Chonbuk National University)
Song, Myoung Youp (Division of Advanced Materials Engineering, Department of Hydrogen and Fuel Cells, Hydrogen & Fuel Cell Research Center, Engineering Research Institute, Chonbuk National University)
Publication Information
Korean Journal of Metals and Materials / v.49, no.4, 2011 , pp. 298-303 More about this Journal
Abstract
Mg-23.5 wt%Ni-xwt%Cu (x = 2.5, 5 and 7.5) samples for hydrogen storage were prepared by melt spinning and crystallization heat treatment from a Mg-23.5 wt%Ni-5 wt%Cu alloy synthesized by the gravity casting method. They were then ground under $H_2$ to obtain a fine powder. Among these samples the Mg-23.5Ni-2.5Cu sample had the highest hydriding and dehydriding rates after activation. The Mg-23.5Ni-2.5Cu sample absorbed 3.59 and 4.01 wt%H for 10 and 60 min, respectively, at 573K under 12 bar $H_{2}$. The activated 88(87.5Mg-10Ni-2.5Cu)-$5Nb_{2}O_{5}-7NbF_{5}$ sample absorbed 2.93 wt%H for 10 min, and 3.14 wt%H for 60 min at 573K under 12 bar $H_{2}$.
Keywords
energy storage materials; hydrogen absorbing materials; mechanical alloying/milling; scanning electron microscopy (SEM);
Citations & Related Records

Times Cited By SCOPUS : 4
연도 인용수 순위
1 J. S. Han and K. D. Park, Kor. J. Met. Mater. 48, 1123 (2010).
2 J. J. Reilly and R. H. Wiswall, Inorg. Chem. 6, 2220 (1967).   DOI
3 J. J. Reilly and R. H. Wiswall Jr, Inorg. Chem. 7, 2254 (1968).   DOI
4 D. L. Douglass, Metall. Trans. A: Phys. Metall. Mater. Sci. 6A, 2179 (1975).
5 M. H. Mintz, Z. Gavra, and Z. Hadari, J. Inorg. Nucl. Chem. 40, 765 (1978).   DOI   ScienceOn
6 M. Pezat, B. Darriet, and P. Hagenmuller, J. Less-Common Met. 74, 427 (1980).   DOI   ScienceOn
7 E. Akiba, K. Nomura, S. Ono, and S. Suda, Int. J. Hydrogen Energy 7, 787 (1982).   DOI   ScienceOn
8 B. Tanguy, J. L. Soubeyroux, M. Pezat, J. Portier, and P. Hagenmuller, Mater. Res. Bull. 11, 1441 (1976).   DOI   ScienceOn
9 F. G. Eisenberg, D. A. Zagnoli, and J. J. Sheridan III, J. Less-Common Met. 74, 323 (1980).   DOI   ScienceOn
10 J.-L. Bobet, E. Akiba, Y. Nakamura, and B. Darriet, Int. J. Hydrogen Energy 25, 987 (2000).   DOI   ScienceOn
11 J. Huot, M.-L. Tremblay, and R. Schulz, J. Alloys Compd. 356, 603 (2003).
12 C. D. Yim, B. S. You, Y. S. Na, and J. S. Bae, Catal. Today 120, 276 (2007).   DOI   ScienceOn
13 H. Gu, Y. Zhu, and L. Li, Int. J. Hydrogen Energy 34, 2654 (2009).   DOI   ScienceOn
14 S. A. Jin, J. H. Shim, Y. W. Cho, and K. W. Yi, J. Power Sources 172, 859 (2007).   DOI   ScienceOn
15 M. Y. Song, S. H. Baek, J.-L. Bobet, and S. H. Hong, Int. J. Hydrogen Energy 35, 10366 (2010).   DOI   ScienceOn
16 M. Y. Song and H. R. Park, J. Alloys Compd. 270, 164 (1998).   DOI   ScienceOn