• Title/Summary/Keyword: Hydrogen Stations

Search Result 108, Processing Time 0.023 seconds

Prediction of a Leakage in a Liquid Hydrogen Pump Using a Finite Element Method (유한요소 해석을 이용한 액화수소 펌프 누설량 예측)

  • HYUNSE KIM;YOUNG-BOG HAM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.3
    • /
    • pp.292-296
    • /
    • 2023
  • Until recently, ships, automobiles, and drones using hydrogen energy are being actively researched. In addition, stations and facilities for hydrogen supply are being developed widely. Among them, a hydrogen pump is necessary for compressing it and transfer to other stations. The liquid hydrogen pump is operated at very high pressure up to 90 MPa. In our research, a reciprocating plunger pump is studied. Especially, a leakage in a liquid hydrogen pump is predicted using a finite element method. As a result, it was found that leak mass flow rates changed from 0.09 to 2.20 kg/h, when the gaps were given from 2 to 6 ㎛. Thus pump efficiencies were calculated from 99.9 to 97.9%, when the gaps changed from 2 to 6 ㎛. These results are useful for the design of the liquid hydrogen pump.

A study of jet dispersion and jet-fire characteristics for safety distance of the hydrogen refueling station (수소충전소 안전거리 설정을 위한 수소제트 및 화염 특성 분석)

  • Kang, Seung-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.74-80
    • /
    • 2019
  • Hydrogen refueling stations that use compressed hydrogen at high pressure provide safety distances between facilities in order to ensure safety. Most accidents occurring in hydrogen stations are accidental leaks. When a leak occurs, various types of ignition sources generate a jet flame. Therefore, the analysis of leaked gas diffusion and jet flame due to high pressure hydrogen leakage is one of the most important factor for setting the safety distance. In this study, the leakage accidents that occur in the hydrogen refueling station operated in high pressure environment are simulated for various leakage source sizes. The results of this study will be used as a reference for the future safety standards.

A Study on the Achievement of Required Safety Integrity Level to Reduce Risk for SMR On-Site Hydrogen Refueling Stations (개질형 On-Site 수소충전소의 리스크 감소를 위해 요구되는 SIL 등급 달성 방안에 관한 연구)

  • Lee, Jin Ho;Lim, Jae-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.6
    • /
    • pp.1-8
    • /
    • 2020
  • In recent years, hydrogen has received much attention as an alternative energy source to fossil fuels. In order to ensure safety from the increasing number of hydrogen refueling stations, prevention methods have been required. In this regard, this study suggested an approach to reduce the risk of hydrogen refueling station by increasing Safety Integrity Level (SIL) for a Steam Methane Reformer (SMR) in On-Site Hydrogen Refueling Station. The worst scenario in the SMR was selected by HAZOP and the required SIL for the worst scenario was identified by LOPA. To verify the required SIL, the PFDavg.(1/RRF) of Safety Instrumented System (SIS) in SMR was calculated by using realistic failure rate data of SIS. Next, several conditions were tested by varying the sensor redundancy and proof test interval reduction and their effects on risk reduction factor were investigated. Consequently, an improved condition, which were the redundancy of two-out-of-three and the proof test interval of twelve months, achieved the tolerable risk resulting in the magnitude of risk reduction factor ten times greater than that of the baseline condition.

Accident Risk Consequences Analysis for Operating a Hydrogen Refueling Station in Urban Railway Site (도심 내 철도부지 수소충전소 운영을 위한 사고 위험 영향 분석)

  • Jae Yong Lee;Deokkyu Youn;Chul-Ho Lee;Jaeyoung Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.70-77
    • /
    • 2023
  • In response to climate change, each country is proposing a goal to reduce greenhouse gases in its energy supply and demand plan, and the use of hydrogen gas is a topic that is always prioritized as an energy resource for implementation. A popular way to use this hydrogen gas is the use of hydrogen fuel cell vehicles, and expansion of hydrogen charging stations is essential for using these hydrogen fuel cell vehicles. However, there are several limitations to the expansion of hydrogen refueling stations, the most representative of which is resident acceptance. Most of the hydrogen charging stations currently built in Korea are located in the outskirts with low population density, so the inconvenience to hydrogen fuel cell vehicle users has not been resolved, and as a result, there has been no progress in the spread of hydrogen fuel cell vehicles. In this paper, we analyzed the consequences of accident damage to determine the risks of constructing a hydrogen charging station on a railroad site frequently used by citizens. The target hydrogen charging station site was a railroad depot in Busan, and there are trains, national highways, and commercial facilities around this site. Assuming the worst-case scenario, we would like to consider the safety of the hydrogen refueling station site by analyzing the area affected by the accident and its consequence.

A Study on the Application of Business Disaster Reduction Activities to Strengthen the Business Continuity of Hydrogen Charging Stations (수소충전소의 사업연속성 강화를 위한 기업재해경감활동 적용 연구)

  • Jang Won Lee;Chang Soo Kim
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.411-420
    • /
    • 2023
  • Purpose: In order to compensate for the limitations of the risk assessment of hydrogen charging stations, it is proposed to apply business disaster reduction activities as a way to strengthen safety and business continuity for accidents that may occur during operation. Method: We explored the application of business disaster reduction activities that can reduce, eliminate, transfer, and accept risks by classifying risks according to the passage of time in the installation and operation of hydrogen charging stations, identifying key tasks, deriving risk scenarios. Result: Existing research results are appropriately applied to the risk assessment conducted in the stage before the installation of hydrogen charging stations. However, there is a limit to the risks that can occur at the operational stage, so applying business disaster reduction activities with several example scenarios has resulted in that it can be applied as a way to strengthen safety and business continuity. Conclusion: All of the currently implemented risk assessments for hydrogen charging stations are being used appropriately. However, it proposes business disaster reduction activities that apply various risk scenarios as an evaluation and response to possible risks at the operational stage.

Analysis of Operation Data Monitoring for LPG-Hydrogen Multi-Fueling Station (LPG-수소복합충전소 운영데이터 모니터링 분석)

  • Park, Songhyun;Kim, Donghwan;Ku, Yeonjin;Kim, Piljong;Huh, Yunsil
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.1-7
    • /
    • 2019
  • In response to the recent increase in demand for hydrogen stations, the Ministry of Trade and Industry has enacted and promulgated special notifications to enable the installation of hydrogen stations in the form of the combined complex in existing automotive fuel supply facilities such as LPG, CNG, and gas stations. Hydrogen multi energy filling stations haven't been operated yet in Korea till the establishment of special standards, so it is necessary create special standards by considering all Korean environmental characteristics such as four seasons and daily crossings. In this study, we collected and analyzed the charging data of Ulsan LPG-Hydrogen Multi Fueling Station installed for the first time in Korea. The data are hourly temperature and pressure data from compressors, storage vessels and dispensers. We used the data collected for a year, including the highest temperature and the lowest temperature in Ulsan to compare seasonal characteristics. As a result, it was found that the change of the outside temperature affects the initial temperature of the vehicle's container of the hydrogen car, which finally affects the charging time and the charging speed of the vehicle. There was no effect on vehicle containers because the limit temperature suggested by the Korean Hydrogen Station Standard(KGS FP217) and the US Filling Protocol(SAE J2601) was not exceeded.

Risk Assessment of Tube Trailer Leaks at Hydrogen Charging Station (수소충전소 튜브트레일러 누출에 따른 위험성평가)

  • Park, Woo-Il;Yoon, Jin-Hee;Kang, Seung-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.57-62
    • /
    • 2021
  • In this study, risk assessment was conducted in case of leakage of storage facilities (tube trailer) using the HyKoRAM program developed through international joint research. The high-pressure gas facilities in the hydrogen filling station are divided into four main categories: storage facilities (tube trailers), processing facilities (compressors), compressed gas facilities, and filling facilities (dispensers). Among them, the design specifications of the tube trailer, which is a storage facility, and the surrounding environmental conditions were reflected to construct an accident scenario with previously occurring accidents and potential accidents. Through this, we identify the risks of storage facilities at hydrogen refueling stations and suggest measures to improve the safety of hydrogen charging stations.

Development of Accident Scenarios for Hydrogen Refueling Station and Fuel Cell Vehicle (수소충전소 및 수소자동차의 사고 시나리오 개발)

  • Byoungjik Park;Yangkyun Kim;Ohk Kun Lim
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.1
    • /
    • pp.27-34
    • /
    • 2023
  • The registration rate of eco-friendly vehicles, such as hydrogen vehicles, is increasing rapidly, however, few first responders have experienced related accidents. Accident scenarios at hydrogen refueling stations and hydrogen vehicles on a road were investigated, and the relative importance of each scenario was analyzed using AHP analysis. Leakage, jet flame, and explosion that occurred inside and outside the hydrogen refueling station were reviewed, and the hydrogen gas explosion in the compartment showed the highest importance value. In case of the hydrogen vehicle, traffic accident statistics and actual accidents were used. It was analyzed that the hydrogen vessel explosion on the road due to the failure of TPRD and the leakage in the underground parking area were difficult to respond. The developed accident scenarios are expected to be used for first responder training.

A Study on Safety Analysis of Stationary LPG - Mobile Hydrogen Complex Refueling Station (LPG 복합 이동식 수소충전소 안전성 분석에 관한 연구)

  • Kim, Piljong;Kang, Seungkyu;Yoo, Myoungjong;Huh, Yunsil
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.48-60
    • /
    • 2019
  • After the Paris Agreement in 2015, the government has been promoting various policies such as 'Hydrogen-Economy Roadmap(2019)' to supply hydrogen. As part of this, the government announced the goal of building 310 hydrogen refueling stations(HRS) until 2022. To this end, special case standard for the introduction of complex, packaged, and mobile hydrogen refueling stations(MHRS) have been enacted and promulgated. The MHRS has the advantage of being able to supply hydrogen to multiple regions. However, due to the movement and close distance between facilities, it is necessary to secure proper installation standards and operational safety through safety analysis. In this study, the possibility of introduction was investigated by designing a standard model and quantitative risk assessment(QRA). As a result of QRA, personal and social risk were acceptable, and the empirical test direction and implications were derived.

Calculation and Comparison of Thermodynamic Properties of Hydrogen Using Equations of State for Compressed Hydrogen Storage (상태방정식을 이용한 고압수소 저장을 위한 수소 열역학 물성 계산 및 비교)

  • PARK, BYUNG HEUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.2
    • /
    • pp.184-193
    • /
    • 2020
  • One of the technical methods to increase the volumetric energy density of hydrogen is to pressurize the gaseous hydrogen and then contain it in a rigid vessel. Especially for automotive systems, the compressed hydrogen storage can be found in cars as well as at refueling stations. During the charging the pressurized hydrogen into a vessel, the temperature increases with the amount of stored hydrogen in the vessel. The temperature of the vessel should be controlled to be less than a limitation for ensure stability of material. Therefore, the accurate estimation of temperature is of significance for safely storing the hydrogen. In this work, three well-known cubic equations of state (EOSs) were adopted to examine the accuracy in regenerating thermodynamic properties of hydrogen within the temperature and pressure ranges for the compressed hydrogen storage. The formulations representing molar volume, internal energy, enthalpy, and entropy were derived for Redlich-Kwong (RK), Soave-Redlioch-Kwong (SRK), and Peng-Robinson (PR) EOSs. The calculated results using the EOSs were compared with literature data given by NIST. It was revealed that the accuracies of RK and SRK EOSs were satisfactorily compatible and better than the results by PR EOS.