• 제목/요약/키워드: Hydrogen Network

검색결과 182건 처리시간 0.034초

Hydrothermal Synthesis, Crystal Structure of Four Novel Complexes Based on Thiabendazole Ligand

  • Wei, Shui-Qiang;Lin, Cui-Wu;Yin, Xian-Hong;Huang, Yue-Jiao;Luo, Pei-Qi
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권9호
    • /
    • pp.2917-2924
    • /
    • 2012
  • Four novel metal-organic complexes $[Cd_2(IP)_2(TBZ)_2(H_2O)_2]{\cdot}(H_2O)$ (1), $[Zn_4(IP)_4(TBZ)_4]{\cdot}2(H_2O)$ (2), $[Zn_2(BTC)(TBZ)_2(CO_2H)]$ (3), [Co(PDC)(TBZ)] (4) (where IP = isophthalate; TBZ = thiabendazole; BTC = 1,3,5-benzenetricarboxylate; PDC = pyridine-3,4-dicarboxylate) have been prepared and characterized by IR spectrum, elemental analysis, thermogravimetric analysis, and single-crystal X-ray diffraction. X-ray structure analysis reveals that 1, 2, and 3 are one-dimensional chain polymers, while 4 is a two-dimensional network polymer. The TBZ acts as a typical chelating ligand coordinated to the metal center in all complexes. The 1D chain architecture of 1 is constructed from isophthalates and cadmium atoms. A simultaneous presence of chelating, monodentate and bidentate coordination modes of IP ligands is observed in complex 2. In complex 3, the 16-membered rings are alternately arranged forming an infinite 1D double-chain structure. The 2D skeleton of 4 is formed by cobalt ions as nodes and PDC dianions as spacers, through coordination bonds. The hydrogen bonds and ${\pi}-{\pi}$ stacking play important roles in affecting the final structure where complexes 1 and 3 have 2D supramolecular networks, while complexes 2 and 4 have 3D supramolecular architectures.

축산생육환경 유해가스 모니터링을 위한 무선가스측정시스템 개발 (Development of Gas Measurement System for the Harmful Gases at Livestock Barn)

  • 김영웅;백승현;박홍배
    • 전자공학회논문지
    • /
    • 제49권9호
    • /
    • pp.314-321
    • /
    • 2012
  • 축산생육환경에서 다양한 경로로부터 발생하는 유해가스는 가축 및 농가작업자에게 직/간접 적으로 영향을 미칠 수 있으며, 점차적인 사육조밀화와 동절기 밀폐환경에 장기간 노출 시 치명적일 수 있다. 본 논문에서는 가축분뇨로부터 발생하는 암모니아, 황화수소, 휘발성유기화합물 가스 등을 모니터링하기 위해 무선가스센서노드와 퍼지 최소-최대 신경회로망을 이용한 가스인식 소프트웨어로 이루어진 가스측정시스템을 제안한다. 제안한 시스템의 성능을 평가하기 위해 가스측정실험환경을 구축하여 제작한 무선가스센서노드로 가스측정실험을 수행하고, 개발한 가스인식 소프트웨어로 대상가스 분류시험을 통해 성능을 입증한다.

Synthesis of Core-shell Copper nanowire with Reducible Copper Lactate Shell and its Application

  • Hwnag, Hyewon;Kim, Areum;Zhong, Zhaoyang;Kwon, Hyeokchan;Moon, Jooho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.430.1-430.1
    • /
    • 2016
  • We present the concept of reducible fugitive material that conformally surrounds core Cu nanowire (NW) to fabricate transparent conducting electrode (TCE). Reducing atmosphere can corrodes/erodes the underlying/surrounding layers and might cause undesirable reactions such impurity doing and contamination, so that hydrogen-/forming gas based annealing is impractical to make device. In this regards, we introduce novel reducible shell conformally surrounding indivial CuNW to provide a protection against the oxidation when exposed to both air and solvent. Uniform copper lactate shell formation is readily achievable by injecting lactic acid to the CuNW dispersion as the acid reacts with the surface oxide/hydroxide or pure copper. Cu lactate shell prevents the core CuNW from the oxidation during the storage and/or film formation, so that the core-shell CuNW maintains without signficant oxidation for long time. Upon simple thermal annealing under vacuum or in nitrogen atmosphere, the Cu lactate shell is easily decomposed to pure Cu, providing an effective way to produce pure CuNW network TCE with typically sheet resistance of $19.8{\Omega}/sq$ and optical transmittance of 85.5% at 550 nm. Our reducible copper lactate core-shell Cu nanowires have the great advantage in fabrication of device such as composite transparent electrodes or solar cells.

  • PDF

Effect of ethyl alcohol aging on the apatite formation of a low-modulus Ti-7.5Mo alloy treated with aqueous NaOH

  • Ho, Wen-Fu;Tsou, Hsi-Kai;Wu, Shih-Ching;Hsu, Shih-Kuang;Chuang, Shao-Hsuan;Hsu, Hsueh-Chuan
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제1권1호
    • /
    • pp.51-62
    • /
    • 2014
  • The purpose of this experiment was to evaluate the apatite-formation abilities of low-modulus Ti-7.5Mo substrates treated with NaOH aqueous solutions and subsequent ethyl alcohol aging before soaking them in simulated body fluid. Specimens of Ti-7.5Mo were initially treated with 5 M NaOH at $60^{\circ}C$ for 24 h, resulting in the formation of a porous network structure composed of sodium hydrogen titanate. Afterwards, the specimens were aged in ethyl alcohol at $60^{\circ}C$ for 5 or 10 min, and subsequently immersed in simulated body fluid at $37^{\circ}C$ for 3, 7 and 14 days. Ethyl alcohol aging significantly increased the apatite-forming abilities of Ti-7.5Mo. The amount of apatite deposited on the Ti-7.5Mo after NaOH treatment and subsequent ethyl alcohol aging was much greater, especially after the Ti-7.5Mo specimens were aged for 5 min. Due to its excellent combination of bioactivity, low elastic modulus and low processing costs, the Ti-7.5Mo treated with NaOH aqueous solutions and subsequently aged in ethyl alcohol has promising heavy load-bearing applications.

Crystal Structure of cis-(Malonato)[(4R,5R)-4,5-bis(Aminomethyl)-2-Isopropyl-1,3-Dioxolane]Platinum(II), A Potent Anticancer Agent

  • Cho, Sang-Woo;Yongkee Cho;Kim, Dai-Kee;Wanchul Shin
    • 한국결정학회지
    • /
    • 제11권1호
    • /
    • pp.22-27
    • /
    • 2000
  • The structure of cis-(malonato)[(4R,5R)-4,5-bis(aminomethyl)-2-isopropyl-1,3-dioxolane]platinum(II) with a potent anticancer activity has been determined by the X-ray crystallographic method. Crystal data are as follows: Pt(C/sub 11/H/sub 20/N₂O/sub 6/), M/sub 4/=471.38, monoclinic, P2₁, a=7.112(1), b=33.615(3), c=7.135(1)Å, β=116.80(1)°, V=1522.6(3)Å, and Z=4. The two independent molecules with very similar structures are approximately related by pseudo two-fold screw axis symmetry, which makes the monolinic cell look like the orthorhombic cell with one molecule in the asymmetric unit and space group C222₁. The crystal packing mode is similar to that of the analogue with the dimethyl substituents instead of the isopropyl group. The Pt atom is coordinate to two O and two N atoms in a square planar structure. The six-membered chelate ring in the leaving ligand assumes a conformation intermediate between the half chair and the boat forms. The seven-membered ring in the carrier ligand assumes a twist-chair conformation and the oxolane ring assumes an envelope conformation. Crystal packing consists of the extensive hydrogen-bonding network in the two-dimensional molecular layers and weak van der Waals interactions between these layers.

  • PDF

타닌산-전이 금속-고분자로 구성된 젤의 단일 단계 합성과 점착제로의 이용 (One-step Fabrication of a Tannic Acid-Transition Metal-Polymer Gel as a Pressure-Sensitive Adhesive)

  • 이재홍;이경문;최시영
    • Korean Chemical Engineering Research
    • /
    • 제58권2호
    • /
    • pp.176-183
    • /
    • 2020
  • 이 연구에서는 작은 유기 분자 말단의 하이드록실기와 전이 금속 사이의 배위 결합을 통해 고분자와 유사하게 연결된 복합체를 제작하고, 점착 부여제를 추가하여 해당 물질의 점착제로의 사용 가능성을 확인하였다. 점착제 합성에 사용한 타닌산(tannic acid, TA)은 하이드록실기를 풍부하게 보유하고 있어 전이 금속과는 배위 결합이 가능하고 친수성 고분자와는 수소 결합이 가능하다. 위의 성질을 이용하여 타닌산과 전이 금속, 고분자 세 가지 성분을 한 번에 간단히 섞어 기판에 잘 펴지며 점착 능력을 보유한 특별한 유변 물성을 가지는 물질을 제작하였다. 합성에 사용한 전이 금속의 종류(Fe3+, Ti4+), 고분자의 종류, 처리 조건 등에 따른 유변 물성의 변화를 확인하는 과정을 통해 점착제로 사용하기에 가장 적합한 성분의 조합을 발견하였으며, 인체에 무해하며 높은 응집력과 접착력을 보유한 다목적 점착제로의 사용 가능성을 확인하였다.

PECVD로 증착된 a-Si박막의 고상결정화에 있어서 기판 온도 및 수소희석의 효과 (Effect of substrate temperature and hydrogen dilution on solid-phase crystallization of plasma-enhanced chemical vapor deposited amorphous silicon films)

  • 이정근
    • 한국진공학회지
    • /
    • 제7권1호
    • /
    • pp.29-34
    • /
    • 1998
  • PECVD방법으로 증착된 비정질 실리콘(a-Si)박막이 고상결정화되고 x-선 회절 (XRD)방법으로 조사되었다. a-Si박막들은 기판 온도 120-$380^{\circ}C$사이에서 Si(100)웨이퍼 위에 $SiH_4$가스 혹은 수소희석된 $SiH_4$가스로 증착되고, $600^{\circ}C$로 가열되어 결정화되었다. 고상화 되었을 때(111), (220), (311)XRD피크들이 나타났고 (111) 우선방위가 두드러졌다. 고상결정 화된 다결정 실리콘(poly-Si)박막들의 XRD피크의 세기는 기판온도가 낮아짐에 따라 증가되 었고, 수소희석은 고상화 효과를 감소시켰다. XRD로 측정된(111)결정립의 평균크기는 기판 온도가 낮아짐에 따라 약 10nm로 증가하였다. 기판온도가 낮아질수록 증착속도는 증가하였 으며, 결정의 크기는 증착속도와 밀접한 관계가 있었다. Si계의 구조적 무질서도가 클수록 고상화에 의한 결정립의 크기도 커지는 것으로 생각된다.

  • PDF

Preparation of Pt Catalysts Supported on ACF with CNF via Catalytic Growth

  • Park, Sang-Sun;Rhee, Jun-Ki;Jeon, Yu-Kwon;Choi, Sung-Won;Shul, Yong-Gun
    • Carbon letters
    • /
    • 제11권1호
    • /
    • pp.38-40
    • /
    • 2010
  • Carbon supported electrocatalysts are commonly used as electrode materials for polymer electrolyte membrane fuel cells(PEMFCs). These kinds of electrocatalysts provide large surface area and sufficient electrical conductivity. The support of typical PEM fuel cell catalysts has been a traditional conductive type of carbon black. However, even though the carbon particles conduct electrons, there is still significant portion of Pt that is isolated from the external circuit and the PEM, resulting in a low Pt utilization. Herein, new types of carbon materials to effectively utilize the Pt catalyst are being evaluated. Carbon nanofiber/activated carbon fiber (CNF/ACF) composite with multifunctional surfaces were prepared through catalytic growth of CNFs on ACFs. Nickel nitrate was used as a precursor of the catalyst to synthesize carbon nanofibers(CNFs). CNFs were synthesized by pyrolysising $CH_4$ using catalysts dispersed in acetone and ACF(activated carbon fiber). The as-prepared samples were characterized with transmission electron microscopy(TEM), scanning electron microscopy(SEM). In TEM image, carbon nanofibers were synthesized on the ACF to form a three-dimensional network. Pt/CNF/ACF was employed as a catalyst for PEMFC. As the ratio of prepared catalyst to commercial catalyst was changed from 0 to 50%, the performance of the mixture of 30 wt% of Pt/CNF/ACF and 70wt% of Pt/C commercial catalyst showed better perfromance than that of 100% commercial catalyst. The unique structure of CNF can supply the significant site for the stabilization of Pt particles. CNF/ACF is expected to be promising support to improve the performance in PEMFC.

Homology Modeling and Docking Study of β-Ketoacyl Acyl Carrier Protein Synthase Ⅲ from Enterococcus Faecalis

  • Jeong, Ki-Woong;Lee, Jee-Young;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권8호
    • /
    • pp.1335-1340
    • /
    • 2007
  • β-Ketoacyl acyl carrier protein synthase (KAS) III is a particularly attractive target in the type II fatty acid synthetic pathway, since it is central to the initiation of fatty acid synthesis. Enterococcus faecalis, a Grampositive bacterium, is one of the major causes of hospital acquired infections. The rise of multidrug-resistant of most bacteria requires the development of new antibiotics, such as inhibition of the KAS III. In order to block the fatty acid synthesis by inhibition of KAS III, at first, three dimensional structure of Enterococcus faecalis KAS III (efKAS III) was determined by comparative homology modeling using MODELLER based on x-ray structure of Staphylococcus aureus KAS III (saKAS III) which is a gram-positive bacteria and is 36.1% identical in amino acid sequences with efKAS III. Since His-Asn-Cys catalytic triad is conserved in efKAS III and saKAS III, substrate specificity of efKAS III and saKAS III and the size of primer binding pocket of these two proteins are expected to be similar. Ligand docking study of efKAS III with naringenin and apigenin showed that naringenin docked more strongly with efKAS III than apigenin, resulting in the intensive hydrogen bond network between naringenin and efKAS III. Also, only naringenin showed antibacterial activity against E. faecalis at 256 μg/mL. This study may give practical implications of flavonoids for antimicrobial effects against E. faecalis.

Computational and experimental characterization of estrogenic activities of 20(S, R)-protopanaxadiol and 20(S, R)-protopanaxatriol

  • Zhang, Tiehua;Zhong, Shuning;Hou, Ligang;Wang, Yongjun;Xing, XiaoJia;Guan, Tianzhu;Zhang, Jie;Li, Tiezhu
    • Journal of Ginseng Research
    • /
    • 제44권5호
    • /
    • pp.690-696
    • /
    • 2020
  • Background: As the main metabolites of ginsenosides, 20(S, R)-protopanaxadiol [PPD(S, R)] and 20(S, R)-protopanaxatriol [PPT(S, R)] are the structural basis response to a series of pharmacological effects of their parent components. Although the estrogenicity of several ginsenosides has been confirmed, however, the underlying mechanisms of their estrogenic effects are still largely unclear. In this work, PPD(S, R) and PPT(S, R) were assessed for their ability to bind and activate human estrogen receptor α (hERα) by a combination of in vitro and in silico analysis. Methods: The recombinant hERα ligand-binding domain (hERα-LBD) was expressed in E. coli strain. The direct binding interactions of ginsenosides with hERα-LBD and their ERα agonistic potency were investigated by fluorescence polarization and reporter gene assays, respectively. Then, molecular dynamics simulations were carried out to simulate the binding modes between ginsenosides and hERα-LBD to reveal the structural basis for their agonist activities toward receptor. Results: Fluorescence polarization assay revealed that PPD(S, R) and PPT(S, R) could bind to hERα-LBD with moderate affinities. In the dual luciferase reporter assay using transiently transfected MCF-7 cells, PPD(S, R) and PPT(S, R) acted as agonists of hERα. Molecular docking results showed that these ginsenosides adopted an agonist conformation in the flexible hydrophobic ligand-binding pocket. The stereostructure of C-20 hydroxyl group and the presence of C-6 hydroxyl group exerted significant influence on the hydrogen bond network and steric hindrance, respectively. Conclusion: This work may provide insight into the chemical and pharmacological screening of novel therapeutic agents from ginsenosides.