• 제목/요약/키워드: Hydrogen Gas Consumption

검색결과 93건 처리시간 0.028초

Development of intelligent model to predict the characteristics of biodiesel operated CI engine with hydrogen injection

  • Karrthik, R.S.;Baskaran, S.;Raghunath, M.
    • Advances in Computational Design
    • /
    • 제4권4호
    • /
    • pp.367-379
    • /
    • 2019
  • Multiple Inputs and Multiple Outputs (MIMO) Fuzzy logic model is developed to predict the engine performance and emission characteristics of pongamia pinnata biodiesel with hydrogen injection. Engine performance and emission characteristics such as brake thermal efficiency (BTE), brake specific energy consumption (BSEC), hydrocarbon (HC), carbon monoxide (CO), carbon dioxide ($CO_2$) and nitrous oxides ($NO_X$) were considered. Experimental investigations were carried out by using four stroke single cylinder constant speed compression ignition engine with the rated power of 5.2 kW at variable load conditions. The performance and emission characteristics are measured using an Exhaust gas analyzer, smoke meter, piezoelectric pressure transducer and crank angle encoder for different fuel blends (Diesel, B10, B20 and B30) and engine load conditions. Fuzzy logic model uses triangular and trapezoidal membership function because of its higher predictive accuracy to predict the engine performance and emission characteristics. Computational results clearly demonstrate that, the proposed fuzzy model has produced fewer deviations and has exhibited higher predictive accuracy with acceptable determination correlation coefficients of 0.99136 to 1 with experimental values. The developed fuzzy logic model has produced good correlation between the fuzzy predicted and experimental values. So it is found to be useful for predicting the engine performance and emission characteristics with limited number of available data.

Assessment of gas production and electrochemical factors for fracturing flow-back fluid treatment in Guangyuan oilfield

  • Liu, Yang;Chen, Wu;Zhang, Shanhui;Shi, Dongpo;Zhu, Mijia
    • Environmental Engineering Research
    • /
    • 제24권3호
    • /
    • pp.521-528
    • /
    • 2019
  • Electrochemical method was used for the fracturing flow-back fluid treatment in Guangyuan oilfield. After performing electrolysis, we found that the amount of $H_2$ gas produced by electrode was closely related to the combination mode of electrodes and electrode materials. Using an aluminium electrode resulted in a large $H_2$ production of each electrode combination, whereas inert anode and cathode materials resulted in low $H_2$ production. Then, the relationship between the gas production of $H_2$ and the treatment efficiency of fracturing flow-back fluid in Guangyuan oilfield was studied. Results showed that the turbidity removal and decolourisation rates of fracturing flow-back fluid were high when $H_2$ production was high. If the $H_2$ production of inert electrode was large, the energy consumption of this inert electrode was also high. However, energy consumption when an aluminium anode material was used was lower than that when the inert electrode was used, whereas the corresponding electrode combination production of $H_2$ was larger than that of the inert electrode combination. When the inert electrode was used as anode, the gas production type was mainly $O_2$, and $Cl_2$ was also produced and dissolved in water to form $ClO^-$. $H_2$ production at the cathode was reduced because $ClO^-$ obtained electrons.

75% 수소 BATCH 소둔시에서의 코일 온도변화에 관한 연구 (A study on coil temperature bariation in 75% hydrogen batch annealing furnace)

  • 전언찬;김순경
    • 한국정밀공학회지
    • /
    • 제11권2호
    • /
    • pp.173-181
    • /
    • 1994
  • A Cold spot temperature control system for the batch annealing furnace has been estabilished in order to reduce energy consumption to improve productivity and stabilize the propertics of products. Therefore we confirmed a relation between annealing cycle time and atmospheric gas, variation of coil cold spot temperature with time during heating and actual temperature measurements at mid-width of each coil during heating and actual temperature measurements at mid-width of each coil during soaking. The results of the tempaeature variation effect on the batch annealing are as follows. 1) Heating time is reduced to one half with increasing atmospheric gas flow rate and changing of atmospheric gas component from HNx to Ax gas, and annealing cycle time is reduced to 2.7 times. 2) In case of short time healing, the slowest heating part is the center of B coil, in case of long time heating, the low temperature point moves from the center of coil to inside coil. And the temperature in this part is higher than other parts when cooling. When finished heating, the cold spot is located 1/3 of coil inside in case of HNx atmospheric gas. But center of coil in case of Ax atmospheric gas. 3) The outside of top coil is the highest temperature point when heating, which becomes the lowest temperature point when cooling. So, this point becomes high temperature zone at heating and low temperature zone at cooling, It has relation according to atmospheric gas component and flow rate. 4) Soaking time at batch annealing cycle determination is made a decision by the input coil width, and soaking time for quality homogenization of 1214mm width coil must be 2.5 hours longer than that of 914mm width coil for the same ciol weight. 5) Annealing cycle time with Ax atmospheric gas is extended 1 hour in of slow cooling during 5 hours in order to avoid rapid cooling.

  • PDF

저온 플라즈마와 활성슬러지 복합 공정에서 체류시간 변화가 악취 저감 및 슬러지 가용화에 미치는 영향 (Effects of Retention Time on the Simultaneous of Odor Removal and Sludge Solubilization Using a Non-Thermal Plasma System)

  • 남궁형규;황현정;송지현
    • 상하수도학회지
    • /
    • 제25권6호
    • /
    • pp.815-824
    • /
    • 2011
  • In this study, a non-thermal plasma system was employed to simultaneously remove odorous compounds and organic sludge. The system consisted of two reactors; the first one was the non-thermal plasma reactor where ozone was produced by the plasma reaction and the ozone oxidized hydrogen sulfide, the model odorous compound, and then the ozone-laden gas stream was introduced to the second reactor where wasted sludge was disintegrated and solubilized by ozone oxidation. In this study, the gas retention time (GRT) and the hydraulic retention time (HRT) were changed in the two-reactor system, and the effects of GRT and HRT on reduction efficiencies of odor and sludge were determined. As the GRT increased, the ozone concentration increased resulting in an increasing efficiency of hydrogen sulfide removal. However, the overall ozone loading rate to the second sludge reactor was the same at any GRT, which resulted in an insignificant change in sludge reduction rate. When HRTs in the sludge reactor were 1, 2, 4 hours, the sludge reduction rates were approximately 30% during the four-hour operation, while the rate increased to 70% at the HRT of 6 hours. Nevertheless, at HRTs greater than 4 hours, the solubilization efficiency was not proportionally increased with increasing specific input energy, indicating that an appropriate sludge retention time needs to be applied to achieve effective solubilization efficiencies at a minimal power consumption for the non-thermal plasma reaction.

LNG 냉열활용을 위한 열교환기의 배열 형태가 냉동창고 성능에 미치는 연구 (Effect of the Array Type of Heat Exchangers on Performance of Refrigerated Warehouse for Utilization of LNG Cold Energy)

  • 한단비;김윤지;변현승;백영순
    • 한국수소및신에너지학회논문집
    • /
    • 제30권3호
    • /
    • pp.282-288
    • /
    • 2019
  • When liquefied natural gas (LNG) is vaporized to form natural gas for industrial and household consumption, a tremendous amount of cold energy is transferred from LNG to seawater as a part of the phase-change process. This heat exchange loop is not only a waste of cold energy, but causes thermal pollution to coastal fishery areas by dumping the cold energy into the sea. This project describes an innovative new design for reclaiming cold energy for use by cold storage warehouses (operating in the 35 to $62^{\circ}C$ range). Conventionally, warehouse cooling is done by mechanical refrigeration systems that consume large amounts of electricity for the maintenance of low temperatures. Here, a closed loop LNG heat exchange system was designed (by simulator) to replace mechanical or vapor-compression refrigeration systems. The software PRO II with PROVISION V9.4 was used to simulate LNG cold energy, gas re-liquefaction, and the vaporized process under various conditions. The effects on sensible and latent heats from changes to the array type of heat exchangers have been investigated, as well as an examination of the optimum.

농산부산물 기반 SOFC 열병합발전 시스템 열교환망 최적화 (Optimization of Heat Exchange Network of SOFC Cogeneration System Based on Agricultural By-products)

  • 홍기훈;엄성현;정형준;황성원
    • 한국가스학회지
    • /
    • 제28권1호
    • /
    • pp.1-10
    • /
    • 2024
  • 본 연구에서는 농업 분야 에너지 자립 시스템 기술도입의 일환으로 농산부산물 기반 SOFC 열병합발전 시스템의 공정 모사 모델을 구축하고 열교환망 최적화를 진행하였다. 0.3 ton/d급 농산부산물 반탄화 연료 가스화기 실험 결과를 기반 농산부산물 SOFC 열병합발전 시스템 모델을 구축하여 4~20 kW급 SOFC 발전 용량별 열교환망 최적화를 진행하였다. 현재 시스템상에서 8 kW급 농산부산물 기반 SOFC 열병합발전 시스템이 최적으로 도출되었으며, 본 연구 결과를 기반으로 추후 상용 설비 설계 시 기초자료로 활용이 가능할 것으로 판단된다.

대용량 액체 수소 저장탱크를 위한 다층단열재의 단열성능 분석 (Adiabatic Performance of Layered Insulating Materials for Bulk LH2 Storage Tanks)

  • 김경호;신동환;김용찬;강상우
    • 한국수소및신에너지학회논문집
    • /
    • 제27권6호
    • /
    • pp.642-650
    • /
    • 2016
  • One of the most feasible solution for reducing the excessive energy consumption and carbon dioxide emission is usage of more efficient fuel such as hydrogen. As is well known, there are three viable technologies for storing hydrogen fuel: compressed gas, metal hydride absorption, and cryogenic liquid. In these technologies, the storage for liquid hydrogen has better energy density by weight than other storage methods. However, the cryogenic liquid storage has a significant disadvantage of boiling losses. That is, high performance of thermal insulation systems must be studied for reducing the boiling losses. This paper presents an experimental study on the effective thermal conductivities of the composite layered insulation with aerogel blankets($Cryogel^{(R)}$ Z and $Pyrogel^{(R)}$ XT-E) and Multi-layer insulation(MLI). The aerogel blankets are known as high porous materials and the good insulators within a soft vacuum range($10^{-3}{\sim}1$ Torr). Also, MLI is known as the best insulator within a high vacuum range(<$10^{-6}{\sim}10^{-3}$ Torr). A vertical axial cryogenic experimental apparatus was designed to investigate the thermal performance of the composite layered insulators under cryogenic conditions as well as consist of a cold mass tank, a heat absorber, annular vacuum space, and an insulators space. The composite insulators were laminated in the insulator space that height was 50 mm. In this study, the effective thermal conductivities of the materials were evaluated by measuring boil-off rate of liquid nitrogen and liquid argon in the cold mass tank.

바이오가스 직접 개질을 위한 플라즈마 수소 추출기 운전 특성 연구 (Operation Characteristics of a Plasma Reformer for Biogas Direct Reforming)

  • 이병진;위수빈;이동규;황상연;송형운
    • 공업화학
    • /
    • 제34권4호
    • /
    • pp.404-411
    • /
    • 2023
  • 바이오가스 직접 개질을 위해 플라즈마 방전영역을 확장할 수 있는 3상 글라이딩 아크 플라즈마 수소 추출기를 설계하고 스팀과 메탄의 부피 비율, 가스 유량, 플라즈마 입력 전력에 대해 개질 특성을 평가하여 운전 조건을 최적화했다. 수소생산효율은 플라즈마 에너지 밀도가 작을수록 증가하는 것으로 확인되었지만 CXHY 혹은 carbon soot와 같은 촉매 내구성에 영향을 줄 수 있는 부산물들이 발생했다. 부산물 생성을 억제하기 위해 스팀과 메탄의 비율 혹은 플라즈마 에너지 밀도를 높여야 했고 플라즈마 개질기 최적 조건으로 스팀과 메탄의 비율을 3, 플라즈마 에너지 밀도를 5.5 ~ 6.0 kJ/L로 선정했다. 또한 플라즈마 개질기에서 발생하는 열이 반응가스를 500 ℃ 이상까지 올려줄 수 있어 바이오가스 버너의 연료사용량을 줄여 수소생산효율을 높일 수 있을 것으로 기대할 수 있다.

고분자전해질 연료전지 Dead-end 운전 최적화에 대한 실험적인 연구 (Experimental Analysis for Optimization of PEM Fuel Cell Dead-end Operation)

  • 이봉구;손영준
    • 한국수소및신에너지학회논문집
    • /
    • 제26권2호
    • /
    • pp.136-147
    • /
    • 2015
  • Dead-ended operation of Proton Exchange Membrane Fuel Cell(PEMFC) provides the simplification of fuel cell systems to reduce fuel consumption and weight of fuel cell. However, the water accumulation within the channel prohibits a uniform supply of fuel. Optimization of the purge strategy is required to increase the fuel cell efficiency since fuel and water are removed during the purge process. In this study, we investigated the average voltage output which depends on two interrelated conditions, namely, the supply gas pressure, purging valve open time. In addition, flow visualization was performed to better understand the water build-up on the anode side and cathode side of PEMFC in terms of a variety of the current density. We analyzed the correlation between the purge condition and water flooding.

고탄소알코올/경유 혼합유를 이용한 디젤엔진 성능 특성 비교 (A Comparative Study on Diesel Engine Performance with Higher Alcohol-diesel Blends)

  • 권재성;양정현;김범수
    • 한국수소및신에너지학회논문집
    • /
    • 제34권6호
    • /
    • pp.767-772
    • /
    • 2023
  • In this study, combustion experiments were conducted at various engine speeds under full-load conditions using a single-cylinder diesel engine by blending butanol, pentanol, and octanol with diesel at a volume ratio of 10%. Experimental results revealed that higher alcohol-diesel blends resulted in lower brake torque and brake power than pure diesel due to the lower calorific value and the cooling effect during evaporation. An evident improvement in the brake thermal efficiency of the blended fuels was observed at engine speeds below 2,000 rpm, with the butanol blend exhibiting the highest thermal efficiency overall. Furthermore, the brake-specific fuel consumption of the higher alcohol-diesel blends was lower than that of pure diesel at speeds below 2,200 rpm. When using blended fuels, the exhaust gas temperature decreased under lean mixture conditions due to heat loss to the air and the cooling effect from fuel evaporation.