• 제목/요약/키워드: Hydrogen Fuel Vehicle

검색결과 262건 처리시간 0.028초

연료전지 자동차용 복합형 가습시스템에 관한 연구 (An Integrated Humidification System for a Fuel Cell Vehicle)

  • 김현유;권혁률;서상훈;박용선;안병기
    • 한국수소및신에너지학회논문집
    • /
    • 제21권6호
    • /
    • pp.547-552
    • /
    • 2010
  • In this study, we suggested an integrated humidification system for a fuel cell electric vehicle (FCEV) as an efficient method of humidification under the various driving condition of the fuel cell vehicle and system. It is improving air humidification system combined the existing membrane humidifier and water injection. As a result, we verified it through experiments and the vehicle test and could get a result of improvement of humidification performance. The results show that an integrated humidification system is a useful method for FCEV applications.

Naphtha의 stream reforming에 의한 수소제조방법에 대한 전과정평가 (Life Cycle Assessment for Hydrogen Production Method using Stream Reforming of Naphtha)

  • 박희일;김익;이병권;허탁
    • 한국수소및신에너지학회논문집
    • /
    • 제13권1호
    • /
    • pp.3-12
    • /
    • 2002
  • In this study, it achieved life cycle assessment to estimate environmental performance for naphtha steam reforming that account for the production over 50% of total hydrogen output. Although hydrogen dosen't emit air emissions, especially, $CO_2$, a large of $CO_2$ is emitted in hydrogen production process. In the result of this study, it ascertained the truth that $CO_2$ is emitted at the rate of $6.3kg/kgH_2$ and that result from steam reforming reaction and use of fossil fuel in hydrogen manufacturing process. Above all, 57% of total $CO_2$ emissions is emitted in process of steam reforming of naphtha and so it knew that the principle of steam reforming is key issue in aspect to environment. Also, it compared hydrogen by fuel of fuel cell vehicle with gasoline fuel of general gasoline vehicle to analyze relative environment of hydrogen for fossil fuel during the life cycle. As the result, it might be difficult in improvement of environment because $CO_2$ emissions during the hydrogen manufacturing process is nearly the same with that during the use of gasoline.

온도에 따른 고분자 전해질형 연료전지시스템의 출력 특성 연구 (A Study on Performance Characteristics of PEMFC with Thermal Variation)

  • 박세준;신영식;정성찬;최정식;차인수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 에너지변화시스템부문
    • /
    • pp.212-214
    • /
    • 2009
  • The polymer electrolyte membrane fuel cell(PEMFC) with the advantages of low-operating temperature, high current density, low cost and volume, fast start-up ability, and suitability for discontinuous operation becomes the most reasonable and attractive power system for transportation vehicle and micro-grid power plant in a household. 200W PEMFC(Polymer electrolyte membrane fuel cell) system applied to middle and small-scaled micro-grid power system was constructed by this study, then the electrical characteristics and diagnosis of the fuel cell were analyzed with thermal variation.

  • PDF

연료전지 차량의 전기적 절연 특성에 관한 연구 (Study on the Electric Insulation Characteristics in a Fuel Cell Vehicle)

  • 유정한;김덕환;김주한;정귀성;금영범;김세훈;안득균
    • 한국수소및신에너지학회논문집
    • /
    • 제23권2호
    • /
    • pp.150-155
    • /
    • 2012
  • Polymer Electrolyte Membrane Fuel Cell (PEMFC) stack power output is needed to be approximately 100 kW to meet the requirements of automotive applications. In order to secure the electric safety for drivers, passengers and mechanics, it is very important to understand phenomena of an electric insulation in a fuel cell vehicle. In this study, we studied the electric insulation properties and the insulation resistance of stack, system and vehicle in the field of fuel cell was estimated at the applied voltage of 500 V, respectively. Also we discussed the insulation factors such as the conductivity of coolant, the element of vehicle design and the intrinsic resistance of the vehicle components.

FTP75 모드에 의한 LPG액상분사자동차의 배출가스 및 나노입자배출특성 (Analysis of Nano-particle and Emissions Characteristics for FTP75 Mode in LPLi Vehicle)

  • 이호길;김용태
    • 한국수소및신에너지학회논문집
    • /
    • 제20권2호
    • /
    • pp.161-167
    • /
    • 2009
  • The regulation of the $CO_2$ emit from vehicles have become much more stringent in recent years. This stringent regulation is more request vehicle manufacturers to develop the alternative fuel vehicles for reducing exhaust emissions. LPG fuel is more clean energy compares with gasoline and diesel fuel. Especially, $CO_2$ emission of LPG Vehicle is less than gasoline vehicle and almost equal to diesel vehicle. For this reason, recently korean government is extending LPG fuel for hybrid car and light duty vehicle. In domestic, Propane is mixing $15{\sim}30%$ to butane for improvement of cold start at winter season. Therefore, In this paper was investigated that the characteristics of emissions according to propane mixing rate with 0, 10, 20, 30% were compared and analyzed by the vehicle test using LPG vehicle according to the FTP75 mode. It was also investigated the characteristics of nano-particle emit with propane mixing rate.

대기오염물질로 인한 연료전지자동차 출력 변화에 대한 연구 (The Effect of Air Pollutant to Fuel Cell Electric Vehicle)

  • 이준기;박상선;설용건
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.154-157
    • /
    • 2009
  • Fuel cell is spotlighted as next energy source of future. The fuel of vehicle will be changed from fossil fuel such as gasoline, diesel to hydrogen. Polymer electrolyte membrane fuel cell(PEMFC) will be used to fuel cell vehicle because of its suitability. PEMFCs need oxygen for cathode. Because PEMFCs in vehicle use air for oxygen, air pollutant will be effect to performance of PEMFC. In this study, we examine a type of filter and pollutant gas how can be effect to performance of fuel cell electric vehicle.

  • PDF

주행거리 증가에 따른 자동차 연비 특성 연구 (A Study on the Characteristics of Vehicle Fuel Economy by Increasing Mileage)

  • 임재혁;김기호;이민호;박진성;이정민
    • 한국수소및신에너지학회논문집
    • /
    • 제29권3호
    • /
    • pp.299-305
    • /
    • 2018
  • The domestic label fuel economy measurement method is the same as the North American measurement method. The results of two test modes (city [FTP-75 mode], highway [HWFET mode]) are calculated to be equivalent to the final fuel economy value calculated as the result of five test modes reflecting various environmental conditions and driving patterns 5-cycle correction formula is used. In this study, we tried to find out that the difference between the domestic label fuel economy of the vehicle and the real road fuel economy felt by the driver compared to the new vehicle condition as the mileage increases. Using domestic label fuel economy measurement method, Four gasoline vehicles and four diesel vehicles were tested for the fuel economy of a new vehicle with a mileage of 150 km or less and domestic fuel economy test $6,500{\pm}1,000km$ durability condition and 15,000 km durability. It is confirmed that the certain portion (6,500 km endurance vehicle) The increase in mileage did not affect the fuel economy or the emission gas significantly, indicating that vehicle durability was limited.

시뮬레이션 기반 연료전지/2차전지 하이브리드 미니버스의 설계 및 성능 평가 (Design and Performance Evaluation for a Fuel Cell/Battery Hybrid Mini-Bus Based on a Simulation)

  • 김민진;공낙원;이원용;김창수
    • 한국수소및신에너지학회논문집
    • /
    • 제18권1호
    • /
    • pp.60-66
    • /
    • 2007
  • In terms of the vehicle efficiency, a fuel cell hybrid system has advantages compared to a conventional internal combustion engine and a fuel cell alone-powered system. The efficiency of the fuel cell hybrid vehicle mainly depends on the maximum power of the fuel cell and therefore it is important to decide the design value of the fuel cell maximum power. In this paper, to estimate the performance of the fuel cell hybrid mini-bus in the design phase the simulator based on the models for the fuel cell stack, the electric battery, the fuel cell balance of plant, the controller, and the vehicle itself is proposed. Additionally, the hybrid mini-bus efficiencies with several different fuel cell powers are simulated for a city driving schedule and are compared on another. Consequently, the proposed simulation scheme is useful to determine the best design value of the fuel cell hybrid vehicles.

Full composites hydrogen fuel cells unmanned aerial vehicle with telescopic boom

  • Carrera, E.;Verrastro, M.;Boretti, Alberto
    • Advances in aircraft and spacecraft science
    • /
    • 제9권1호
    • /
    • pp.17-37
    • /
    • 2022
  • This paper discusses an improved unmanned aerial vehicle, UAV, configuration characterized by telescopic booms to optimize the flight mechanics and fuel consumption of the aircraft at various loading/flight conditions.The starting point consists of a full-composite smaller UAV which was derived by a general aviation ultralight motorized aircraft ULM. The present design, named ToBoFlex, extends the two-booms configuration to a three tons aircraft. To adapt the design to needs relevant to different applications, new solutions were proposed in aerodynamic fields and materials and structural areas. Different structural solutions were reported. To optimize aircraft endurance, the innovative concept of Telescopic Tail Boom was considered along with two different tails architecture. A new structural configuration of the fuselage was proposed. Further consideration of hydrogen fuel cell electric propulsion is now being studied in collaboration between the Polytechnic of Turin and Prince Mohammad Bin Fahd University which could be the starting point of future investigations.

누적 주행거리에 따른 플러그인 하이브리드 자동차의 연비 특성 연구 (Study on Fuel Economy Characteristics of Plug-In Hybrid Electric Vehicle by Cumulative Distance)

  • 박진성;임재혁;김기호;이정민
    • 한국수소및신에너지학회논문집
    • /
    • 제29권6호
    • /
    • pp.661-667
    • /
    • 2018
  • Electric vehicles are taken a long time to charge and are restricted driving where charging infrastructure was not sufficiently constructed. The vehicle developed to solve these problems is a plug-in hybrid vehicle. It is possible to drive a certain distance by using electric motor and when the battery runs out, it operate the engine. Plug-in hybrid vehicle have a complicated structure and a lot of parts comparing a general vehicle because the electric parts and the internal combustion engine are installed together. Therefore, as the aging (mileage) of the plug-in hybrid vehicle, the influence which change of fuel consumption is expected to be larger than a general vehicle, but an experimental data are lacking. In this paper, we cumulate a mileage of the plug-in hybrid vehicle about 15,000 km and measured the fuel economy when the cumulated distance reached within 160 km, 6,500 km, 15,000 km respectively, by using domestic public test method. For measuring fuel economy of the vehicle, CD mode (driving distance on a single charge) which use only motor and the CS mode which operate motor and combustion engine were measured respectively. As a result, the fuel economy slightly increased at cumulated mileage of 6,500 km compared to the 160 km and the fuel economy of 15,000 km was similar to 160 km.