• Title/Summary/Keyword: Hydrogen Fuel Vehicle

Search Result 262, Processing Time 0.02 seconds

A Study of Battery Charging Time for Efficient Operation of Fuel Cell Hybrid Vehicle (연료전지 하이브리드 차량의 효율적인 작동을 위한 배터리 충전 시기에 대한 연구)

  • Jin, Wei;Kwon, Oh-Jung;Jo, In-Su;Hyun, Deok-Su;Cheon, Seung-Ho;Oh, Byeong-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.1
    • /
    • pp.38-44
    • /
    • 2009
  • Recently, the research focused on fuel cell hybrid vehicles (FCHVs) is becoming an attractive solution due to environmental pollution generated by fossil fuel vehicles. The proper energy control strategy will result in extending the fuel cell lifetime, increasing of energy efficiency and an improvement of vehicle performance. Battery state of charge (SoC) is an important quantity and the estimation of the SoC is also the basis of the energy control strategy for hybrid electric vehicles. Estimating the battery's SoC is complicated by the fact that the SoC depends on many factors such as temperature, battery capacitance and internal resistance. In this paper, battery charging time estimated by SoC is studied by using the speed response and current response. Hybrid system is consist of a fuel cell unit and a battery in series connection. For experiment, speed response of vehicle and current response of battery were determined under different state of charge. As the results, the optimal battery charging time can be estimated. Current response time was faster than RPM response time at low speed and vice versa at high speed.

Effect of Composite Sandwich Endplates on the Improvement of Cold Start Characteristics for PEMFC (복합재료 샌드위치 엔드플레이트의 연료전지 냉시동성 향상에 미치는 효과)

  • Suh, Jung-Do;Ko, Jae-Jun;Ahn, Byung-Ki;Yu, Ha-Na;Lee, Dai-Gil
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.6
    • /
    • pp.859-867
    • /
    • 2011
  • The cold start problem is one of major obstacles to overcome for the commercialization of fuel cell vehicles. However, the cold start characteristics of fuel cell systems are very complicated since various phenomena, i.e. ice-blocking, electro-chemical reactions, heat transfer, and defrosting of BOP components, are involved in them. This paper presents a framework to approach the problem at a full stack scale using Axiomatic Design (AD). It was characterized in terms of Functional Requirements (FRs) and Design Parameters (DPs) while their relations were established in a design matrix. Considering the design matrix, the endplates should have low thermal conductivity and capacity without increase in weight or decrease in structural stiffness. Consequently, composite sandwich endplates were proposed and examined both through finite element analyses and experiments simulating cold start conditions. From the examinations, it was found that the composite sandwich endplates significantly contributed to improving the cold start characteristics of PEMFC.

Performance Evaluation of Hydrogen Generation System using NaBH4 Hydrolysis for 200 W Fuel Cell Powered UAV (200 W급 연료전지 무인기를 위한 NaBH4 가수분해용 수소발생시스템의 성능평가)

  • Oh, Taek-Hyun;Kwon, Sejin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.4
    • /
    • pp.296-303
    • /
    • 2015
  • The concentration of solute in a $NaBH_4$ solution is limited due to the low solubility of $NaBO_2$. The performance of a hydrogen generation system was evaluated using various concentrations of $NaBH_4$ solution. First, a self-hydrolysis test and a hydrogen generation test for 30 min were performed. The composition of $NaBH_4$ solution was selected to be 1 wt% NaOH + 25 wt% $NaBH_4$+74wt% $H_2O$ by considering the amount of hydrogen loss, stability of hydrogen generation, $NaBO_2$ precipitation, conversion efficiency, and the purpose of its application. A hydrogen generation system for a 200 W fuel cell was evaluated for 3 h. Although hydrogen generation rate decreased with time due to $NaBO_2$ precipitation, hydrogen was produced for 3 h (conversion efficiency: 87.4%). The energy density of the 200 W fuel cell system was 263 Wh/kg. A small unmanned aerial vehicle with this fuel cell system can achieve 1.5 times longer flight time than one flying on batteries.

Hydrogen Effect Assessment of Fuel Supply Systems for Hydrogen Blended Natural Gas Vehicle (수소-천연가스 혼합연료 차량 연료 공급시스템 수소영향 평가)

  • Kang, SeungKyu;Kim, SangRyul
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.1-6
    • /
    • 2017
  • This study evaluated hydrogen effect of metal and non-metallic materials used in the hydrogen blended natural gas vehicle. Hydrogen penetrated concentration of 34Cr-Mo steel(850MPa tensile strength) for winter driving conditions was measured 0.0018ppm and summer driving conditions was 5.3ppm. The critical hydrogen concentration of high strength metal used in this study was measured 1.03ppm by CLT. Therefore, 34CrMo steel cas cause problems in the 30% HCNG(25MPa) environment. In case of the test for non-metallic materials, all materials met the criteria of the gas resistance test, but Fluorocarbon Rubber material had a significant change in the volume. So if it is used, extra care is needed.

Design and Performance Test for a Fuel Cell Ejector to Reduce its Development Cost (개발 비용 감소를 위한 연료전지용 이젝터의 설계 및 성능평가)

  • Kim, Min-Jin;Kim, Dong-Ha;Yu, Sang-Phil;Lee, Won-Yong;Kim, Chang-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.3
    • /
    • pp.279-285
    • /
    • 2006
  • Recirculation for the unreacted fuel is necessary to improve the overall efficiency of the fuel cell system and to prevent fuel starvation since the fuel cell for a vehicle application is a closed system. In case of the automotive fuel cell, the ejector which does not require any parasitic power is good for the performance improvement and easy operation. It is essential to design the customized ejector due to the lack of the commercial ejector corresponding to the operating conditions of the fuel cell systems. In this study, the design methodology for the ejector customized to an automotive fuel cell is proposed. The model based sensitivity analysis prevents the time-consuming redesign and reduces the cost of developing ejector. As a result, the customized ejector to meet the desired performance within overall operating range has developed for the PEMFC automotive system.

The International Code Trend of High Pressure Hydrogen Cylinder and Establishing Domestic Code for the Hydrogen Fuel Cell Vehicle (수소연료전지차량 고압수소용기의 국제기준 동향 및 국내기준 개발방향)

  • Kim, Chang Jong;Lee, Seung Hoon;Kim, Young Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.225.2-225.2
    • /
    • 2010
  • 전 세계는 온실 가스의 방출을 줄이기 위하여 기존의 화석연료를 대체할 수 있는 에너지를 찾기 위해 연구개발에 박차를 가하고 있다. 이러한 계속적인 연구에서, 전 세계의 국가들은 태양열, 풍력, 지열 및 수소에너지와 같이 화석연료를 대체할 다양한 가스를 조사해왔다. 대체에너지 중 수소 연료는 실제로 배출가스가 없기 때문에 가장 유망한 대안이라고 할 수 있다. 연료전지자동차용 연료로 수소를 사용하기 위해서는 저장합금, 액체 및 압축 상태로 저장할 수 있다. 이 중 세계 대부분의 자동차 메이커 들은 수소를 압축하는 방식을 채택하고 있으며, 주행거리를 확보하기 위하여 고압상태로 수소가스를 저장하는 방식을 사용한다. 수소연료전지 자동차용으로 고압의 수소를 저장할 수 있고, 자동차에 탑재할 수 있도록 가벼운 용기의 개발이 진행되고 있다. 이 중 Type3와 Type4 형태의 용기가 시범적으로 적용되고 있으며, 이러한 용기의 안전성을 확보하기 위한 기준들이 국 내외에서 개발되고 있다. 현재 국제기준 중 UN ECE의 WG.29에서 선진국들을 중심으로 수소연료전지 자동차용 용기의 안전성 평가를 위한 기준을 개발하고 있다. 본 연구에서는 ISO. 15869의 기술기준에 대한 안전성 분석과 미국의 SAE J2579의 기술 보고서에서 제시한 새로운 개념의 안전성 평가 기법을 기준으로 제정되고 있는 UN ECE WG.29의 draft초안을 비교하고, 향후 수소연료전지 자동차용 용기를 위한 국내기준의 방향을 제시하고자 한다.

  • PDF

A Study on Power Management Strategy for Multi-Power Source Fuel Cell Hybrid Armored Vehicle (다중 동력 연료전지 하이브리드 장갑차량의 동력관리 전략에 관한 연구)

  • An Sang-Jun;Kim Tae-Jin;Lee Kyo Il
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.361-365
    • /
    • 2005
  • Since the fuel cell uses the hydrogen for its fuel. it has no emission and higher efficiency than an internal combustion engine. Also fuel cell is much quieter than engine generator and generates heat much less than engine generator. So it has advantage of Army's 'si lent watch' capability and the ability to operate undetected by the enemy. The fuel cell hybrid system combines a fuel cell power system with an ESS. The ESS (e.g., batteries or ultracapacitors) reduces the fuel cell's peak power and transient response requirements. It allows the fuel cell to operate more efficiently and recovery of vehicle energy during deceleration. The battery has high energy density, so it has the advantage regarding driving distance. However, it has a disadvantage considering dynamic characteristic because of low power density. One other hand. the ultracapacitor has higher power density, so it can handle sudden change or discharge of required power. Yet. it has lower energy density. so it will be bigger and heavier than the battery when it has the same energy. This paper proposes the power management strategy for multi-power source fuel cell hybrid system. which is applied with the merits of both battery and ultra capacitor by using both of them simultaneous.

  • PDF

THE NUMERICAL SIMULATION OF HYDROGEN DIFFUSION FOR THE HYDROGEN LEAKAGE IN TUNNEL (터널 내 수소연료 자동차의 수소 누설로 인한 수소 확산에 대한 수치해석 연구)

  • Ahn, Hyuk-Jin;Jung, Jae-Hyuk;Hur, Nahm-Keon;Lee, Moon-Kyu;Yong, Gee-Joong
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.47-54
    • /
    • 2010
  • In the present study, a numerical simulation for the diffusion of hydrogen leakage of FCV(Fuel Cell Vehicle) in a tunnel was performed to aid the assessment of risk in case of leakage accident. The temporal and spatial distributions of the hydrogen concentration around FCV are predicted from the present numerical analyses. Flammable region of 4-74% and explosive region of 18-59% hydrogen by volume was identified from the present results. Factors influencing the diffusion of the hydrogen jet were examined to evaluate the effectiveness of tunnel ventilation system for relieving the accumulation of the leaked hydrogen gas. The distribution of the concentration of the leaked hydrogen for various cases can be used as a database in various applications for the hydrogen safety.

Development of Lightweight Direct Methanol Fuel Cell (DMFC) Stack Using Metallic Bipolar Plates for Unmanned Aerial Vehicles (UAVs) (금속분리판을 이용한 무인기항공기(UAV)용 경량화 DMFC 스택 개발)

  • LEE, SUWON;KIM, DOHWAN;RO, JUNGHO;CHO, YOUNGRAE;KIM, DOYOUN;JU, HYUNCHUL
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.5
    • /
    • pp.492-501
    • /
    • 2017
  • A 900 W scale direct methanol fuel cell (DMFC) stack is designed and fabricated for unmanned aerial vehicle (UAV) applications. To meet the volume and weight requirements, metallic bipolar plates are applied to the DMFC stack for the first time wherein POS470FC was chosen as bipolar plate material. To ensure good robustness of the metallic bipolar plate based DMFC stack, finite element method based simulations are conducted using a commercial ANSYS Fluent software. The stress buildup and deformation characteristics on bipolar plates and end plates are analyzed in details. The present DMFC stack exhibits the performance of 1,130 W at 32 V and 35.3 A, clearly demonstrating that it could successfully operate for UAVs requiring around 1,000 W of power.

A Study of the Electrode Catalyst Migration and Aging Mechanism of PEMFC (고분자연료전지 내 촉매 이동 및 노화메커니즘에 관한 연구)

  • Lee, Yoon-Hee;Lee, Ki-Suk;Yun, Jong-Jin;Byun, Jung-Yeon
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.3
    • /
    • pp.256-263
    • /
    • 2012
  • We studied the degradation phenomenon of Pt catalyst in PEMFC. We used the electron microscope analysis technique including the ultra-microtome pretreatment method, FEG-SEM and TEM analysis methods for analysis of Pt nanoparticles. The Pt catalyst degradation is observed not only in electrode site but also in membrane site. We investigated these various degradation phenomena. The cathode electrode layer thickness is reduced. The size of the catalyst is increased much larger than initial size in membrane site. The catalyst moved from electrode layer to the electrolyte membrane. The rounded shape of catalyst was changed to the polygon. As a result, we found that the catalyst degradation processes of migration and coarsening occurred by the followings mechanisms; (1) dissolution of Pt ; (2) diffusion of Pt ion ; (3) Pt ion chemical reduction in membrane; (4) Coarsening of Pt particles (Ostwald ripening) ; (5) polygon shape change of Pt by {111} plane growth.