• 제목/요약/키워드: Hydrogen Evolution

검색결과 344건 처리시간 0.02초

탄소나노튜브/흑연펠트 전극의 산소작용기를 활용한 바나듐 레독스 흐름 전지의 수소발생 억제 효과 (Suppressing Effect of Hydrogen Evolution by Oxygen Functional Groups on CNT/ Graphite Felt Electrode for Vanadium Redox Flow Battery)

  • 김민성;고민성
    • 한국표면공학회지
    • /
    • 제54권4호
    • /
    • pp.164-170
    • /
    • 2021
  • Vanadium redox flow batteries (VRFB) have emerged as large-scale energy storage systems (ESS) due to their advantages such as low cross-contamination, long life, and flexible design. However, Hydrogen evolution reaction (HER) in the negative half-cell causes a harmful influence on the performance of the VRFB by consuming current. Moreover, HER hinders V2+/V3+ redox reaction between electrode and electrolyte by forming a bubble. To address the HER problem, carbon nanotube/graphite felt electrode (CNT/GF) with oxygen functional groups was synthesized through the hydrothermal method in the H2SO4 + HNO3 (3:1) mixed acid solution. These oxygen functional groups on the CNT/GF succeed in suppressing the HER and improving charge transfer for V2+/V3+ redox reaction. As a result, the oxygen functional group applied electrode exhibited a low overpotential of 0.395 V for V2+/V3+ redox reaction. Hence, this work could offer a new strategy to design and synthesize effective electrodes for HER suppression and improving the energy density of VRFB.

Reaction of Sodium Tris(diethylamino)aluminum Hydride with Selected Organic Compounds Containing Representative Functional Groups

  • Cha, Jin-Soon;Jeoung, Min-Kyoo;Kim, Jong-Mi;Kwon, Oh-Oun;Lee, Keung-Dong;Kim, Eun-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권10호
    • /
    • pp.881-888
    • /
    • 1994
  • The approximate rates and stoichiometry of the reaction of excess sodium tris(diethylamino)aluminum hydride (ST-DEA) with selected organic compounds containing representative functional groups under standardized conditions(tetrahydrofuran, $0{\circ}$) were studied in order to characterize the reducing characteristics of the reagent for selective reductions. The reducing ability of STDEA was also compared with those of the parent sodium aluminum hydride (SAH) and lithium tris(diethylamino)aluminum hydride (LTDEA). The reagent appears to be milder than LTDEA. Nevertheless, the reducing action of STDEA is very similar to that observed previously for LTDEA, as is the case of the corresponding parent sodium and lithium aluminum hydrides. STDEA shows a unique reducing characteristics. Thus, benzyl alcohol, phenol and 1-hexanol evolved hydrogen slowly, whereas 3-hexanol and 3-ethyl-3-pentanol, secondary and tertiary alcohols, were essentially inert to STDEA. Primary amine, such as n-hexylamine, evolved only 1 equivalent of hydrogen slowly. On the other hand, thiols examined were absolutely stable. STDEA reduced aidehydes and ketones rapidly to the corresponding alcohols. The stereoselectivity in the reduction of cyclic ketones by STDEA was similar to that by LTDEA. Quinones, such as p-benzoquinone and anthraquinone, were reduced to the corresponding 1,4-dihydroxycyclohexadienes without evolution of hydrogen. Carboxylic acids and anhydrides were reduced very slowly, whereas acid chlorides were reduced to the corresponding alcohols readily. Esters and epoxides were also reduced readily. Primary carboxamides consumed hydrides for reduction slowly with concurrent hydrogen evolution, but tertiary amides were readily reduced to the corresponding tertiary amines. The rate of reduction of aromatic nitriles was much faster than that of aliphatic nitriles. Nitrogen compounds examined were also reduced slowly. Finally, disulfide, sulfoxide, sulfone, and cyclohexyl tosylate were readily reduced without evolution of hydrogen. In addition to that, the reagent appears to be an excellent partial reducing agent: like LTDEA, STDEA converted ester and primary carboxamides to the corresponding aldehydes in good yields. Furthermore, the reagent reduced aromatic nitriles to the corresponding aldehydes chemoselectively in the presence of aliphatic nitriles. Consequently, STDEA can replace LTDEA effectively, with a higher selectivity, in most organic reductions.

광합성세균에 의한 수소 생산에 관한 연구 (제 1보) 광합성균의 분리 및 동정 (Studies on Hydrogen Evolution by Photosynthetic Bacteria(Part 1) Isolation and Identification of the Photosynthetic Bacteria)

  • 배무;양성우;고영희
    • 한국미생물·생명공학회지
    • /
    • 제10권1호
    • /
    • pp.27-32
    • /
    • 1982
  • 광합성세균에 의한 수소산을 목적으로 성남근교의 논 토양으로부터 수소를 다량 생산하는 비유황세균 1주를 분리하고 동정하였다. 이 균주의 생리적 형태적 및 배양상의 특성을 규명한 결과 Rhodopseudomonas gelatinosa K-13으로 동정되었다.

  • PDF

광량 및 TiO2 나노튜브 길이별 광활성 연구: Cr(VI)환원 및 수소제조 (Effect of TiO2 Nanotube Length on Photocatalytic Activity with Different Light Intensities: Cr(VI) Reduction and Hydrogen Production)

  • 주현규;심은정;이재민;윤재경
    • 한국수소및신에너지학회논문집
    • /
    • 제22권4호
    • /
    • pp.432-442
    • /
    • 2011
  • Anodized tubular $TiO_2$ electrodes (ATTEs) with three noticeably different lengths are prepared to determine their optimum length for the photo-driven activity in the reaction of Cr(VI) reduction and hydrogen evolution. The ATTEs with ethylene glycol have longer $TiO_2$ tubes (7-15.6 ${\mu}m$) than those with hydrfluoric acid (0.6-0.8 ${\mu}m$). These samples, which differ only in the length of the tubes, with a wall thickness of ca. 20 nm, consist mainly of an anatase crystalline phase after heat treatment at $650^{\circ}C$, since the anatase crystallites at the tube walls do not undergo transformation into rutile phase, due to the constraints imposed by the wall thickness. Among them, the medium size (ca. 8 ${\mu}m$) tubes provide the optimum conditions, irrespective of the light intensity, which is explained in terms of the correlation between the amount of photons and the adsorbed electron acceptors and their location. Photocatalytic Cr(VI) reduction leads to ca. 60% reduction of Cr(VI) even under 1 sun irradiation with the medium-sized anodized $TiO_2$ tubes, but only ca. 20% with the short- and long-sized tubes. For hydrogen evolution, tubes longer than 8 ${\mu}m$ do not exhibit better performance with any light intensity.

전이금속 이중층 수산화물 기반 산소발생반응 촉매 연구 동향 (Transition Metal-Based Layered Double Hydroxides for Oxygen Evolution Reaction Catalysts)

  • 한다운;박경배
    • 한국전기전자재료학회논문지
    • /
    • 제37권4호
    • /
    • pp.358-373
    • /
    • 2024
  • Oxygen evolution reaction is a critical bottleneck for the development of efficient electrochemical hydrogen production because of its sluggish reaction. Among various catalysts, transition metal-based layered double hydroxide has drawn significant attention due to their excellent catalytic properties and cost-effectiveness. This paper begins with basic crystal structures, and then conventional adsorbate evolution mechanism of layered double hydroxide. Strategies for enhancing catalytic properties based on adsorbate evolution mechanism and lattice oxygen mechanism that could surpass theoretical limit of adsorbate evolution mechanism are discussed. This paper ends with a brief discussion on the challenges and future directions of layered double hydroxide-based oxygen evolution reaction catalysts.

Physical Vapor Deposition 방법으로 제조된 Al-Ni 전극의 두께가 알칼라인 수전해 수소발생반응에 미치는 영향 연구 (Understanding the Effect on Hydrogen Evolution Reaction in Alkaline Medium of Thickness of Physical Vapor Deposited Al-Ni Electrodes)

  • 한원비;조현석;조원철;김창희
    • 한국수소및신에너지학회논문집
    • /
    • 제28권6호
    • /
    • pp.610-617
    • /
    • 2017
  • This paper presents a study of the effect of thickness of porous Al-Ni electrodes, on the Hydrogen Evolution Reaction (HER) in alkaline media. As varying deposition time at 300 W DC sputtering power, the thickness of the Al-Ni electrodes was controlled from 1 to $20{\mu}m$. The heat treatment was carried out in $610^{\circ}C$, followed by selective leaching of the Al-rich phase. XRD studies confirmed the presence of $Al_3Ni_2$ intermetallic compounds after the heat treatment, indicating the diffusion of Ni from the Ni-rich phase to Al-rich phase. The porous structure of the Al-Ni electrodes after the selective leaching of Al was also confirmed in SEM-EDS analysis. The double layer capacitance ($C_{dl}$) and roughness factor ($R_f$) of the electrodes were increased for the thicker Al-Ni electrodes. As opposed to the general results in above, there were no further improvements of the HER activity in the case of the electrode thickness above $10{\mu}m$. This result may indicate that the $R_f$ is not the primary factor for the HER activity in alkaline media.

전기화학적 물 분해 시스템에서 산소발생반응을 위한 Co와 Mo 기반 촉매의 최근 연구 동향 (Research on Co- and Mo-Based Catalysts for the Oxygen Evolution Reaction in Electrochemical Water Splitting System)

  • 박준성;정원석;부종찬
    • 전기화학회지
    • /
    • 제26권4호
    • /
    • pp.64-70
    • /
    • 2023
  • 급격한 온실가스 배출량 증가로 인해 지구 온난화가 심화되고 있다. 이로 인해 탄소중립의 필요성과 이행이 더욱 절실해졌다. 이를 위해 여러 가지 신재생에너지 중 수소에 대한 관심이 부각되고 있다. 수소는 지구 상에 풍부한 자원이며 무탄소 전원으로 친환경적이다. 궁극적으로 물의 전기분해에 의해 친환경 수소를 얻을 수 있다. 하지만 산소 발생 반응에 사용되는 촉매는 고가이며 희귀하고 촉매의 내구성에 문제가 있어 어려움을 겪고 있기 때문에 비귀금속 촉매의 개발이 필요하다. 본 총설에서는 최근 발표된 산소 발생 촉매 중 비귀금속 촉매인 Co와 Mo 기반의 촉매를 정리, 요약하여 소개하고 있다. 이를 통해 비귀금속 촉매의 활성과 내구성을 증가시키기 위한 촉매의 특성 설계를 이해하는 데 도움이 될 것이다.

Can Artificial Intelligence Boost Developing Electrocatalysts for Efficient Water Splitting to Produce Green Hydrogen?

  • Jaehyun Kim;Ho Won Jang
    • 한국재료학회지
    • /
    • 제33권5호
    • /
    • pp.175-188
    • /
    • 2023
  • Water electrolysis holds great potential as a method for producing renewable hydrogen fuel at large-scale, and to replace the fossil fuels responsible for greenhouse gases emissions and global climate change. To reduce the cost of hydrogen and make it competitive against fossil fuels, the efficiency of green hydrogen production should be maximized. This requires superior electrocatalysts to reduce the reaction energy barriers. The development of catalytic materials has mostly relied on empirical, trial-and-error methods because of the complicated, multidimensional, and dynamic nature of catalysis, requiring significant time and effort to find optimized multicomponent catalysts under a variety of reaction conditions. The ultimate goal for all researchers in the materials science and engineering field is the rational and efficient design of materials with desired performance. Discovering and understanding new catalysts with desired properties is at the heart of materials science research. This process can benefit from machine learning (ML), given the complex nature of catalytic reactions and vast range of candidate materials. This review summarizes recent achievements in catalysts discovery for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The basic concepts of ML algorithms and practical guides for materials scientists are also demonstrated. The challenges and strategies of applying ML are discussed, which should be collaboratively addressed by materials scientists and ML communities. The ultimate integration of ML in catalyst development is expected to accelerate the design, discovery, optimization, and interpretation of superior electrocatalysts, to realize a carbon-free ecosystem based on green hydrogen.

Photoelectrochemical Hydrogen Production on Textured Silicon Photocathode

  • Oh, Il-Whan
    • 전기화학회지
    • /
    • 제14권4호
    • /
    • pp.191-195
    • /
    • 2011
  • Wet chemical etching methods were utilized to conduct Si surface texturing, which could enhance photoelectrochemical hydrogen generation rate. Two different etching methods tested, which were anisotropic metal-catalyzed electroless etching and isotropic etching. The Si nano-texture that was fabricated by the anisotropic etching showed ~25% increase in photocurrent for H2 generation. The photocurrent enhancement was attributed to the reduced reflection loss at the nano-textured Si surface, which provided a layer of intermediate density between water and the Si substrate.

다단 반응을 고려한 수소-공기 예혼합 화염의 발생 및 전파 (Onset and Propagation of Hydrogen-Air Premixed Flame with Multiple Kinetics)

  • 한조영;백승욱
    • 한국전산유체공학회지
    • /
    • 제9권1호
    • /
    • pp.25-33
    • /
    • 2004
  • Flame onset and propagation within hydrogen premixed gas mixture are numerically investigated in an rectangular enclosure. A detailed chemistry for hydrogen reaction is applied to anticipate the thermochemical behavior of intermediate species appropriately. To facilitate computation, 10 species and 16 elementary reaction steps for hydrogen combustion are taken into account. On the basis of 30% of hydrogen concentration in hydrogen-air mixture, the effects of position and quantity of ignition sources on the flame evolution are analyzed. From the simulation results, the methods to decrease the potential hazard caused by the flame propagation are suggested.