• Title/Summary/Keyword: Hydrogen Damage

Search Result 540, Processing Time 0.027 seconds

Schisandra Chinensis Inhibits Oxidative DNA Damage and Lipid Peroxidation Via Antioxidant Activity

  • Jeong, Jin-Boo;Jeong, Hyung-Jin
    • Korean Journal of Plant Resources
    • /
    • v.22 no.3
    • /
    • pp.195-202
    • /
    • 2009
  • Schisandra chinensis have been traditionally used in Asia for the treatment of dyspnea, cough, mouth dryness, spontaneous diaphoresis, nocturnal diaphoresis, nocturnal emission, dysentery, insomnia and amnesia. The purpose of this study is to evaluate the protective effects of Schisandra chinensis on oxidative DNA damage and lipid peroxidation induced by ROS in non cellular and cellular system. DPPH radical, hydroxyl radical and hydrogen peroxide scavenging assay were used to measure the antioxidant activities. Phi X-174RF I plasmid DNA cleavage assay and intracellular DNA migration assay were used to evaluate the protective effect on oxidative DNA damage. MTT assay and lipid peroxidation assay were used for evaluating the protective effect on oxidative cell damage. It was found to scavenge DPPH radical, hydrogen peroxide and hydroxyl radical and it inhibited oxidative DNA damage, lipid peroxidation and cell death induced by hydroxyl radical. These data indicate that Schisandra chinensis possesses a spectrum of antioxidant and DNA-protective properties

Evaluation of Protective Effects of Houttuynia cordata on H2O2-Induced Oxidative DNA Damage Using an Alkaline Comet Assay in Human HepG2 Cells

  • Hah, Dae-Sik;Kim, Chung-Hui;Ryu, Jae-Doo;Kim, Eui-Kyung;Kim, Jong-Shu
    • Toxicological Research
    • /
    • v.23 no.1
    • /
    • pp.25-31
    • /
    • 2007
  • To evaluate the protective effect of Houttuynia cordata on hydrogen peroxide-induced oxidative DNA damage in HepG2 cell line, we used an alkaline single-cell gel electrophoresis (SCGE; comet assay). The DNA damage was analyzed by tail moment (TM) and tail length (TL), which used markers of DNA strand breaks in SCGE. The $100{\mu}g/ml$ of methanolic extract of Houttuynia cordata root showed significant protective effects (p < 0.01) against hydrogen peroxide-induced DNA damage in HepG2 cells and increased cell viability against hydrogen peroxide. The results of this study indicate that Houttuynia cordata root methanol extract acts as a potential antioxidant, and exhibits potential anticancer properties, which may provide a clue to find applications in new pharmaceuticals for oxidative stability.

Damage Evaluation of Adjacent Structures for Detonation of Hydrogen Storage Facilities (수소저장시설의 폭발에 대한 인접 구조물의 손상도 평가)

  • Jinwon Shin
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.1
    • /
    • pp.61-70
    • /
    • 2023
  • This study presents an analytical study of investigating the effect of shock waves generated by the hydrogen detonation and damage to structures for the safety evaluation of hydrogen storage facilities against detonation. Blast scenarios were established considering the volume of the hydrogen storage facility of 10 L to 50,000 L, states of charge (SOC) of 50% and 100%, and initial pressures of 50 MPa and 100 MPa. The equivalent TNT weight for hydrgen detonation was determined considering the mechanical and chemical energies of hydrogen. A hydrogen detonation model for the converted equivalent TNT weight was made using design equations that improved the Kingery-Bulmash design chart of UFC 3-340-02. The hydrogen detonation model was validated for overpressure and impulse in comparison to the past experimental results associated with the detonation of hydrogen tank. A parametric study based on the blast scenarios was performed using the validated hydrogen detonation model, and design charts for overpressure and impulse according to the standoff distance from the center of charge was provided. Further, design charts of the three-stage structural damage and standoff distance of adjacent structures according to the level of overpressure and impact were proposed using the overpressure and impulse charts and pressure-impulse diagrams.

Protective Effect of Ursolic Acid from Corni fructus on the Hydrogen Peroxide-induced Damage of HEI-OC1 Auditory Cells (산수유로부터 추출한 ursolic acid가 과산화수소로 손상된 HEI-OC1 청각세포보호에 미치는 영향)

  • Yu, Hyeon-Hee;Seo, Se-Jeong;Hur, Jong-Moon;Park, Rae-Kil;So, Hong-Seob;Jeon, Byung-Hun;You, Yong-Ouk
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1524-1529
    • /
    • 2006
  • The fruits of Cornus officinalis have been used in traditional Oriental medicine for treatment of inner ear diseases, such as tinnitus and hearing loss. In the present study, we showed that the ursolic acid obtained from Corni fructus protected HEI-OC1 auditory cells from hydrogen peroxide cytotoxicity in a dose-dependent fashion. In addition, to investigate the protection mechanism of ursolic acid on hydrogen peroxide cytotoxicity toward HEI-OC1, we measured the effects of ursolic acid on lipid peroxidation and activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) in hydrogen peroxide treated cells. Ursolic acid (0.05 - 2 ${\mu}g/ml$) had protective effect against the hydrogen peroxide-induced HEI-OC1 cell damage and reduced lipid peroxidation in a dose-dependent manner. Pre-treatment with ursolic acid significantly attenuated the decrease in activities of CAT and GPX, but SOD activity was not affected by the ursolic acid or hydrogen peroxide. These results indicate that ursolic acid protects hydrogen peroxide-induced HEI-OC1 cell damage through inhibition of lipid peroxidation and induce the antioxidant enzymes CAT and GPX.

Detection and Evaluation Technique of Hydrogen Attack (수소손상 검출과 평가기술)

  • Won, Soon-Ho;Hyun, Yang-Ki;Lee, Jong-O;Cho, Kyung-Shik;Lee, Jae-Do
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.32-37
    • /
    • 2002
  • The presence of hydrogen in industrial plants is a source of damage. Hydrogen attack is one such form of degradation and often causing large tube ruptures that necessitate an immediate shutdown. Hydrogen attack may reduce the fracture toughness as well as the strength of steels. This reduction is caused partially by the presence of cavities and microcracks at the grain boundaries. In the past several techniques have been used with limited results. This paper describes the application of an ultrasonic velocity and attenuation in hydrogen damage. Ultrasonic tests showed a decrease in wave velocity and an increase in attenuation. Such results demonstrate the potential for ultrasonic nondestructive testing to quantify damage. Based on this study, reliable recommendation is suggested to detect hydrogen attack.

Effect of Surface Damage of Metal Substrate on LIBS Signal (금속 Substrate의 표면손상이 LIBS신호에 미치는 영향)

  • Jang, Sang-Ik;Kim, Kibum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1259-1264
    • /
    • 2014
  • Hydrogen is in the world limelight for future energy source, and it has been already used in various industry fields including aerospace. The extremely fine molecule of the hydrogen can be easily leaked from tiny size of the crack on the surface of transporting pipes or storage tanks, and it could bring on awfully terrible disaster. In this study, Laser-Induced Breakdown Spectroscopy (LIBS) was employed to develope a reliable detection scheme for a small quantity of hydrogen leakage. Effect of three different metal substrates (i.e. Al, Cu, SUS) on plasma generation and the intensity of the hydrogen atomic signal was investigated, and the surface damage of the substrates due to repetitive laser shots was observed using Scanning electron microscope. It was also evaluated how the surface damage could distort the atomic signal. The intensity of the atomic signal was found to be the strongest, and the signal distortion due to the surface damage was approximately $100W/m^2$ lower when Al was used for the substrate.

Protective Effect of Caesalpinia sappan L. on Hydrogen Peroxide

  • Yoo Yeong Min;Lee Seon Goo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.6
    • /
    • pp.1524-1527
    • /
    • 2003
  • In this study, we demonstrated the antioxidant effect of the Caesalpinia sappan L. extract through the scavenging effect against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and the protective effect on protein damage and PC12 cells against cupric ion/hydrogen peroxide. Its IC/sub 50/ value of the scavenging effect against DPPH radical was 7.7 ㎍. Protection of its extract against oxidative bovine serum albumin (BSA)damage induced by hydrogen peroxide was more effective than that of vitamin C. The protective effect on PC12 cells by hydrogen peroxide was shown to be more potent in is extract than in vitamin C. DNA fragmentation analysis also supports this result.

A basic study for explosion pressure prediction of hydrogen fuel vehicle hydrogen tanks in underground parking lot (지하주차장 수소연료차 수소탱크 폭발 압력 예측을 위한 기초 연구)

  • Lee, Ho-Hyung;Kim, Hyo-Gyu;Yoo, Ji-Oh;Lee, Hu-Yeong;Kwon, Oh-Seung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.605-612
    • /
    • 2021
  • Amid growing global damage due to abnormal weather caused by global warming, the introduction of eco-friendly cars is accelerating to reduce greenhouse gas emissions from internal combustion engines. Accordingly, many studies are being conducted in each country to prepare for the explosion of hydrogen fuel in semi-closed spaces such as tunnels and underground parking lots to ensure the safety of hydrogen-electric vehicles. As a result of predicting the explosion pressure of the hydrogen tank using the equivalent TNT model, it was found to be about 1.12 times and 2.30 times higher at a height of 1.5 meters, respectively, based on the case of 52 liters of hydrogen capacity. A review of the impact on the human body and buildings by converting the predicted maximum explosive pressure into the amount of impact predicted that all predicted values would result in lung damage or severe partial destruction. The predicted degree of damage was applied only by converting the amount of impact caused by the explosion, and considering the additional damage caused by the explosion, it is believed that the actual damage will increase further and safety and disaster prevention measures should be taken.

A Study on Explosive Hazardous Areas in Hydrogen Handling Facility (수소 취급설비의 폭발위험장소에 관한 연구)

  • PYO, DON-YOUNG;LIM, OCK-TAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.1
    • /
    • pp.29-34
    • /
    • 2019
  • Safety of hydrogen handling facilities is needed as supply of hydrogen cars has been expanded recently. In this study, the adequacy of safety regulations of hydrogen handling facilities and the risk of damage with hydrogen leakage were studied. The range of explosion hazard location of the hydrogen filling plant was investigated using the computational fluid dynamics (CFD) method, Explosive hazardous area is influenced by leakage type, hole size and sectional area. When the conditions of KS standard are applied, range explosive hazardous area is expanded 7.05 m, maximum. It is about 7 times larger than exceptional standard of hydrogen station. Meanwhile, distance from leakage point to 25% LEL of hydrogen is investigated 1.6 m. Considering the shape of charging hose, regulation of hydrogen station is appropriate.