• Title/Summary/Keyword: Hydrogen Combustion

Search Result 719, Processing Time 0.029 seconds

ANALYSIS OF DIRECT INJECTION SI STRATIFIED COMBUSTION IN HYDROGEN LEAN MIXTURE - COMBUSTION PROMOTION AND COOLING LOSS BY HYDROGEN -

  • Shudo, Toshio;Tsuga, Koichiro
    • International Journal of Automotive Technology
    • /
    • v.2 no.3
    • /
    • pp.85-91
    • /
    • 2001
  • Characteristics of methane direct-injection spark-ignition stratified combustion in lean hydrogen mixture were analyzed both in a single cylinder engine and in a constant volume combustion chamber. Combustion pressure and Instantaneous combustion chamber wall temperature during the combustion process were measured with a thin-film thermocouple and used in analyses of combustion and cooling loss. Results in this research show that the premixed hydrogen increases cooling loss to combustion chamber wall while achieving combustion promotion, and the combustion system is effective especially in lean mixture conditions. Analysis of flame propagation was also done with Schlieren photography in the constant volume combustion chamber.

  • PDF

Combustion Characteristics of Methane-Hydrogen-Air Premixture( I ) (메탄-수소-공기 예혼합기의 연소특성( I ))

  • Kim, B.S.;Kwon, C.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.129-139
    • /
    • 1995
  • This study investigates the combustion characteristics of methane-hydrogen-air premixture in a constant volume combustion chamber. Primary factors of the combustion characteristics of methane- hydrogen-air premixture are the equivalence ratio and hydrogen supplement rate. In the case of $\phi$= 1.1, maximum combustion pressure and heat release rate have peaks, and they increase as the initial pressure and hydrogen supplement rate increase. The total burning time is also the shortest at the $\phi$= 1.1, it shorten by lowering the initial pressure and by increasing the hydrogen supplement rate. The maximum flame temperature is shown at the $\phi$= 1.0, and increasing the initial pressure and hydrogen supplement rate, it increases. The concentration of NO reveals the highest value at the $\phi$= 0.9, and it increases by increasing the initial pressure and hydrogen supplement rate. It is also found that the limit of lean inflammability of methane-hydrogen-air premixture is greatly widened by increasing the hydrogen supplement rate.

  • PDF

Analysis on the Characteristics of RICEM for Researching Combustion Characteristics of Linear Hydrogen Power System (리니어 수소동력시스템의 연소연구용 급속흡입압축기의 특성 해석)

  • Lee, J.H.;Kim, K.M.;Jeong, D.Y.;Lee, Jong-T.
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.1
    • /
    • pp.66-73
    • /
    • 2005
  • Hydrogen linear power system is estimated as the next generation power system which can obtain a performance as same as fuel cell. In order to develop Hydrogen combustion power system with high thermal efficiency, it is very important to understand the basic characteristics of hydrogen combustion and establish combustion stabilization technique of its system. In this study, RICEM(Rapid Intake Compression Expansion Machine) for researching of hydrogen combustion linear power system was manufactured and evaluated, and the basic characteristics of linear RICEM were analyzed.

Simulation Analysis of MILD Combustion and NOx Formation for Methane-Hydrogen Mixture Using 0D Model (0D 모델을 활용한 메탄-수소 혼소에 따른 MILD 연소 및 NOx 배출 특성 해석 연구)

  • AN, SOJEONG;PARK, JINJE;BAE, YOUN-SANG;LEE, YOUNGJAE
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.4
    • /
    • pp.400-412
    • /
    • 2022
  • Hydrogen with high chemical reactivity and combustion efficiency, is expected to reduce greenhouse gas and CO emission. However, there is a problem of increase in NOx emission due to hydrogen combustion. MILD combustion technology has been proposed to resolve NOx emission. In this study, the characteristics of MILD combustion and NOx formation by flue gas recirculation (KV) in CH4-H2 mixture were analyzed and predicted using 0D premixed combustion model. The ignition delay time became shorter as the hydrogen co-firing rate increased, and longer as the recirculation rate increased. For NOx emission, EINO decreased as the KV increased, but EINO increased as the hydrogen co- firing rate increased. In particular, EINO was predicted to increase significiently above 80% hydrogen. Through the pathway analysis of NO formation, it was found that the influence of N2O intermediate route and NNH route was enhanced for hydrogen co-firing.

Combustion Characteristics of Methane-Hydrogen-Air Premixture(II) (메탄-수소-공기 예혼합기의 연소특성(II))

  • 김봉석;이영재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.156-167
    • /
    • 1996
  • The present work is a continuation of our previous study to investigate the effects of parameters such as equivalence ratio, hydrogen supplement rate and initial pressure on combustion characteristics in a disk-shaped constant volume combustion chamber. The main results obtained from the study can be summarized as follows. The flames in near stoichiometric mixture of methane-air are propagated with a spherical shape, but in excess rich or lean mixtures are propagated with a elliptical shape. And, they are changed to an unstable elliptical shape flame with very regular cells by increasing the hydrogen supplement rate. Also, flame is sluggishly propagated at increased initial pressure in combustion chamber. Volume fraction of burned gas and flame radius as the combustion characteristics are increased by increasing the hydrogen supplement rate, especially at the combustion middle period, but then are slowly increased by increasing the initial pressure.

  • PDF

A Study on the Characteristics of Injection and Combustion with Directly Injected Hydrogen Fuel (직접분사식 수소연료의 분무 및 연소특성에 관한 연구)

  • Lee, Seang-Wock;Kee, Wan-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.24-29
    • /
    • 2007
  • This study aims to provide a fundamental data for directly injected hydrogen fuel engines. Spray, ignition and combustion characteristics of hydrogen were studied using constant volume chamber. For spray visualization, hydrogen was vertically injected into a combustion chamber at various condition, for example, injection pressure, ambient pressure. And an argon laser was used for the shadowgraph photography by applying optical method. Also, to investigate heat-release rate and flame propagations, spark was ignited on hydrogen injected at the different time after injection and the duration of injection was also changed. Processes of ignition and combustion were analyzed by heat-release rate calculated by pressure history and were observed by shadowgraph photography The results gave much knowledge of spray, ignition and combustion characteristics of hydrogen.

An Experimental Study on Flammability Limits and Combustion Characteristics of Synthetic Gas in a Constant Combustion Chamber (정적연소기를 이용한 합성가스의 가연한계 및 연소특성에 관한 실험적 연구)

  • Cho, Yong-Seok;Lee, Seang-Wock;Won, Sang-Yeon;Park, Young-Joon;Kim, Duk-Sang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.14-21
    • /
    • 2008
  • Synthetic gas is defined as reformed gas from hydrocarbon-based fuel and the major chemical species of the synthetic gas are $H_2$, CO and $N_2$. Among them, hydrogen from synthetic gas is very useful species in chemical process such as combustion. It is a main reason that many studies have been performed to develop an effective reforming device. Furthermore, other technologies have been studied for synthetic gas application, such as the ESGI(Exhaust Synthetic Gas Injection) technology. ESGI injects and burns synthetic gas in the exhaust pipe so that heat from hydrogen combustion helps fast warmup of the close-coupled catalyst and reduction of harmful emissions. However, it is very hard to understand combustion characteristic of hydrogen under low oxygen environment and complicated variation in chemical species in exhaust gas. This study focuses on the characteristics of hydrogen combustion under ESGI operating conditions using a CVC(Constant Volume Chamber). Measurements of pressure variation and flame speed have been performed for various oxygen and hydrogen concentrations. Results have been analyzed to understand ignition and combustion characteristics of hydrogen under lower oxygen conditions. The CVC experiments showed that under lower oxygen concentration, amount of active chemicals in the combustion chamber was a crucial factor to influence hydrogen combustion as well as hydrogen/oxygen ratio. It is also found that increase in volume fraction of oxygen is effective for the fast and stable burning of hydrogen by virtue of increase in flame speed.

GOTHIC-3D APPLICABILITY TO HYDROGEN COMBUSTION ANALYSIS

  • LEE JUNG-JAE;LEE JIN-YONG;PARK GOON-CHERL;LEE BYUNG-CHUL;YOO HOJONG;KIM HYEONG-TAEK;OH SEUNG-JONG
    • Nuclear Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.265-272
    • /
    • 2005
  • Severe accidents in nuclear power plants can cause hydrogen-generating chemical reactions, which create the danger of hydrogen combustion and thus threaten containment integrity. For containment analyses, a three-dimensional mechanistic code, GOTHIC-3D has been applied near source compartments to predict whether or not highly reactive gas mixtures can form during an accident with the hydrogen mitigation system working. To assess the code applicability to hydrogen combustion analysis, this paper presents the numerical calculation results of GOTHIC-3D for various hydrogen combustion experiments, including FLAME, LSVCTF, and SNU-2D. In this study, a technical base for the modeling oflarge- and small-scale facilities was introduced through sensitivity studies on cell size and bum modeling parameters. Use of a turbulent bum option of the eddy dissipation concept enabled scale-free applications. Lowering the bum parameter values for the flame thickness and the bum temperature limit resulted in a larger flame velocity. When applied to hydrogen combustion analysis, this study revealed that the GOTHIC-3D code is generally able to predict the combustion phenomena with its default bum modeling parameters for large-scale facilities. However, the code needs further modifications of its bum modeling parameters to be applied to either small-scale facilities or extremely fast transients.

Effect of low H2 content in natural gas on the Combustion Characteristics of Gas Turbine (천연가스 내 미량의 수소함량이 가스터빈의 연소특성에 미치는 영향)

  • Lee, Min Chul;Park, Seik;Kim, Sungchul;Yoon, Jisoo;Joo, Sungpeel;Yoon, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.109-110
    • /
    • 2013
  • This paper describes gas turbine combustion characteristics of synthetic natural gas which contains a small amount hydrogen content. By conducting ambient pressure high temperature combustion test at gas turbine relevant combustor geometry, the combustion characteristics such as combustion instability, NOx and CO emission, temperatures at turbine inlet, nozzle and dump plane, and flame structure from high speed OH chemiluminescence images were investigated when changing hydrogen content from zero to 5%. From the results, qualitative and quantitative relationships are derived between key aspects of combustion performance, notably NOx/CO emission and combustion instability. Natural gas containing hydrogen up to 5% does not show significant difference in view of all combustion characteristics except combustion instability. Only up to 1% hydrogen addition could not change the pressure fluctuation and phase gas between fluctuations of pressure and heat release. From the results, it can be concluded that synthetic national gas which contains 1% of hydrogen can be guaranteed for the stable and reliable operation of natural gas firing gas turbine.

  • PDF

HYDROGEN USE IN INTERNAL COMBUSTION ENGINE: A REVIEW

  • Kumar, Vasu;Gupta, Dhruv;Kumar, Naveen
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.87-99
    • /
    • 2015
  • Fast depletion of fossil fuels is urgently demanding a carry out work for research to find out the viable alternative fuels for meeting sustainable energy demand with minimum environmental impact. In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. Hydrogen is expected to be one of the most important fuels in the near future to meet the stringent emission norms. The use of the hydrogen as fuel in the internal combustion engine represents an alternative use to replace the hydrocarbons fuels, which produce polluting gases such as carbon monoxide (CO), hydro carbon (HC) during combustion. In this paper contemporary research on the hydrogen-fuelled internal combustion engine can be given. First hydrogen-engine fundamentals were described by examining the engine-specific properties of hydrogen and then existing literature were surveyed.