DOI QR코드

DOI QR Code

Simulation Analysis of MILD Combustion and NOx Formation for Methane-Hydrogen Mixture Using 0D Model

0D 모델을 활용한 메탄-수소 혼소에 따른 MILD 연소 및 NOx 배출 특성 해석 연구

  • AN, SOJEONG (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • PARK, JINJE (Korea Institute of Industrial Technology) ;
  • BAE, YOUN-SANG (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • LEE, YOUNGJAE (Korea Institute of Industrial Technology)
  • 안소정 (연세대학교 화공생명공학과) ;
  • 박진제 (한국생산기술연구원) ;
  • 배윤상 (연세대학교 화공생명공학과) ;
  • 이영재 (한국생산기술연구원)
  • Received : 2022.05.31
  • Accepted : 2022.08.18
  • Published : 2022.08.30

Abstract

Hydrogen with high chemical reactivity and combustion efficiency, is expected to reduce greenhouse gas and CO emission. However, there is a problem of increase in NOx emission due to hydrogen combustion. MILD combustion technology has been proposed to resolve NOx emission. In this study, the characteristics of MILD combustion and NOx formation by flue gas recirculation (KV) in CH4-H2 mixture were analyzed and predicted using 0D premixed combustion model. The ignition delay time became shorter as the hydrogen co-firing rate increased, and longer as the recirculation rate increased. For NOx emission, EINO decreased as the KV increased, but EINO increased as the hydrogen co- firing rate increased. In particular, EINO was predicted to increase significiently above 80% hydrogen. Through the pathway analysis of NO formation, it was found that the influence of N2O intermediate route and NNH route was enhanced for hydrogen co-firing.

Keywords

Acknowledgement

본 논문은 한국생산기술연구원 기관주요사업 "탄소중립을 위한 암모니아 기반 청정 수소 생산 기술개발(KITECH JD-220001)"의 지원으로 수행되었습니다.

References

  1. J. Nowotny and T. N. Veziroglu, "Impact of hydrogen on the environment", Int. J. Hydrogen Energy, Vol. 36, No. 20, 2011, pp. 13218-13224, doi: https://doi.org/10.1016/j.ijhydene.2011.07.071.
  2. W. Dougherty, S. Kartha, C. Rajan, M. Lazarus, A. Bailie, B. Runkle, and A. Fencl, "Greenhouse gas reduction benefits and costs of a large-scale transition to hydrogen in the USA", Energy Policy, Vol. 37, No. 1, 2009, pp. 56-67, doi: https://doi.org/10.1016/j.enpol.2008.06.039.
  3. L. I. Lubis, I. Dincer, G. F. Naterer, and M. A. Rosen, "Utilizing hydrogen energy to reduce greenhouse gas emissions in Canada's residential sector", Int. J. Hydrogen Energy, Vol. 34, No. 4, 2009, pp. 1631-1637, doi: https://doi.org/10.1016/j.ijhydene.2008.12.043.
  4. M. Pudukudy, Z. Yaakob, M. Mohammad, B. Narayanan, and K. Sopian, "Renewable hydrogen economy in Asia - opportunities and challenges: an overview", Renewable and Sustainable Energy Reviews, Vol. 30, 2014, pp. 743-757, doi: https://doi.org/10.1016/j.rser.2013.11.015.
  5. Y. Joo, M. Kim, J. Park, S. Park, and J. Shin, "Hydrogen enriched gas turbine: core technologies and R&D trend", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 4, 2020, pp. 351-362, doi: https://doi.org/10.7316/KHNES.2020.31.4.351.
  6. A. E. E. Khalil and A. K. Gupta, "Hydrogen addition effects on high intensity distributed combustion", Applied Energy, Vol. 104, 2013, pp. 71-78, doi: https://doi.org/10.1016/j.apenergy.2012.11.004.
  7. V. K. Arghode and A. K. Gupta, "Hydrogen addition effects on methane-air colorless distributed combustion flames", Int. J. Hydrogen Energy, Vol. 36, No. 10, 2011, pp. 6292-6302, doi: https://doi.org/10.1016/j.ijhydene.2011.02.028.
  8. A. Cavaliere and M. de Joannon, "Mild combustion", Progress in Energy and Combustion science, Vol. 30, No. 4, 2004, pp. 329-366, doi: https://doi.org/10.1016/j.pecs.2004.02.003.
  9. P. Bozza, "Development of a fuel flexible, high efficiency combustion unit", University of Naples Federico II Ph.D thesis, 2017. Retrieved from http://www.fedoa.unina.it/12213/1/Bozza_Pio_30.pdf.
  10. J. A. Wunning and J. G. Wunning, "Flameless oxidation to reduce thermal NO-formation", Progress in Energy and Combustion Science, Vol. 23, No. 1, 1997, pp. 81-94, doi: https://doi.org/10.1016/S0360-1285(97)00006-3.
  11. S. Taamallah, K. Vogiatzaki, F. M. Alzahrani, E. M. Mokheimer, M. A. Habib, and A. F. Ghoniem, "Fuel flexibility, stability and emissions in premixed hydrogen-rich gas turbine combustion: technology, fundamentals, and numerical simulations", Applied Energy, Vol. 154, 2015, pp. 1020-1047, doi: https://doi.org/10.1016/j.apenergy.2015.04.044.
  12. A. Mardani and S. Tabejamaat, "Effect of hydrogen on hydrogen-methane turbulent non-premixed flame under MILD condition", Int. J. Hydrogen Energy, Vol. 35, No. 20, 2010, pp. 11324-11331, doi: https://doi.org/10.1016/j.ijhydene.2010.06.064.
  13. A. Parente, C. Galletti, and L. Tognotti, "A simplified approach for predicting NO formation in MILD combustion of CH4-H2 mixtures", Proceedings of the Combustion Institute, Vol. 33, No. 2, 2011, pp. 3343-3350, doi: https://doi.org/10.1016/j.proci.2010.06.141.
  14. P. Li, F. Wang, J. Mi, B. B. Dally, Z. Mei, J. Zhang, and A. Parente, "Mechanisms of NO formation in MILD combustion of CH4/H2 fuel blends", Int. J. Hydrogen Energy, Vol. 39, No. 33, 2014, pp. 19187-19203, doi: https://doi.org/10.1016/j.ijhydene.2014.09.050.
  15. G. Ali, T. Zhang, W. Wu, and Y. Zhou, "Effect of hydrogen addition on NOx formation mechanism and pathways in MILD combustion of H2-rich low calorific value fuels", Int. J. Hydrogen Energy, Vol. 45, No. 15, 2020, pp. 9200-9210, doi: https://doi.org/10.1016/j.ijhydene.2020.01.027.
  16. M . M . Noor, A. P. Wandel, and T. Yusaf, "Analysis of recirculation zone and ignition position of non-premixed bluff-body for biogas MILD combustion", International Journal of Automotive and Mechanical Engineering, Vol. 8, No. 1, 2013, pp. 1176-1186. Retrieved from http://eprints.usq.edu.au/id/eprint/24981. https://doi.org/10.15282/ijame.8.2013.8.0096
  17. B. F. Magnussen and B. H. Hjertager, "On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion", Symposium (International) on Combustion, Vol. 16, No. 1, 1977, pp. 719-729, doi: https://doi.org/10.1016/S0082-0784(77)80366-4.
  18. A. Parente, M. R. Malik, F. Contino, A. Cuoci, and B. B. Dally, "Extension of the Eddy Dissipation Concept for turbulence/chemistry interactions to MILD combustion", Fuel, Vol. 163, 2016, pp. 98-111, doi: https://doi.org/10.1016/j.fuel.2015.09.020.
  19. M. T. Lewandowski and I. S. Ertesvag, "Analysis of the Eddy Dissipation Concept formulation for MILD combustion modelling", Fuel, Vol. 224, 2018, pp. 687-700, doi: https://doi.org/10.1016/j.fuel.2018.03.110.
  20. C.T. Bowman, R.K. Hanson, D.F. Davidson, W.C. Gardiner, Jr., V. Lissianski, G.P. Smith, D.M. Golden, M. Frenklach and M. Goldenberg, "GRI-Mech 2.11", 1995. Retrieved from http://combustion.berkeley.edu/gri-mech/.
  21. A. Mardani, S. Tabejamaat, and S. Hassanpour, "Numerical study of CO and CO2 formation in CH4/H2 blended flame under MILD condition", Combustion and Flame, Vol. 160, No. 9, 2013, pp. 1636-1649, doi: https://doi.org/10.1016/j.combustflame.2013.04.003.
  22. Y. J. Kim, C. B. Oh, and O. Fujita, "Prediction performance of chemical mechanisms for numerical simulation of methane jet MILD combustion", Advances in Mechanical Engineering, Vol. 5, 2013, pp. 138729, doi: https://doi.org/10.1155/2013/138729.
  23. M. Ravikanti, M. Hossain, and W. Malalasekera, "Laminar flamelet model prediction of NOx formation in a turbulent bluff-body combustor", Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, Vol. 223, No. 1, 2009, pp. 41-54, doi: https://doi.org/10.1243/09576509JPE569.
  24. J. Abraham, F. A. Williams, and F. V. Bracco, "A discussion of turbulent flame structure in premixed charges", SAE Transactions, Vol. 94, 1985, pp. 128-143. Retrieved from http://www.jstor.org/stable/44467411.
  25. A. M. Y. Razak, "Industrial gas turbines: performance and operability", Woodhead Publishing, UK, 2007.
  26. S. R. Turns, "An introduction to combustion: concepts and applications", McGraw-Hill, USA, 1996.
  27. J. W. Bozzelli and A. M. Dean, "O + NNH: a possible new route for NOX formation in flames", Int. J. Chem. Kinet., Vol. 27, No. 11, 1995, pp. 1097-1109, doi: https://doi.org/10.1002/kin.550271107.